Suppr超能文献

多元模糊划分的经验贝叶斯方法。

Empirical Bayes Approaches to Multivariate Fuzzy Partitions.

作者信息

Woodbury M A, Manton K G

出版信息

Multivariate Behav Res. 1991 Apr 1;26(2):291-321. doi: 10.1207/s15327906mbr2602_6.

Abstract

In describing high dimensional discrete response data, mathematical and statistical issues arise that require multivariate procedures that are not based on normal distributions, that is, the mathematical representation of high dimensional discrete response data (Event Spaces) requires a representation in lower dimensional parameter spaces consistent with the discrete properties of the Event Space. Mapping discrete responses to latent discrete classes has the limitation of not representing real individual variation within the categories. The use of a fuzzy partition model is proposed which describes individuals in terms of partial membership in multiple latent categories which represents bounded discrete event spaces with significant third and higher order moments. We discuss statistical issues arising in identifying both the deterministic and the stochastic variation of data when applications involve systematic variation due to observed and unobserved variables. We present an empirical Bayes-maximum likelihood estimation scheme for the application of the fuzzy partition models.

摘要

在描述高维离散响应数据时,会出现一些数学和统计问题,这些问题需要基于非正态分布的多变量方法,也就是说,高维离散响应数据(事件空间)的数学表示需要在与事件空间的离散特性一致的低维参数空间中进行表示。将离散响应映射到潜在离散类别存在无法表示类别内真实个体差异的局限性。本文提出了一种模糊划分模型,该模型根据个体在多个潜在类别中的部分隶属度来描述个体,这些潜在类别表示具有显著三阶及更高阶矩的有界离散事件空间。当应用涉及由于观测和未观测变量导致的系统变异时,我们讨论了在识别数据的确定性和随机变异时出现的统计问题。我们提出了一种经验贝叶斯 - 最大似然估计方案,用于模糊划分模型的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验