Hansmann P, Ayral T, Tejeda A, Biermann S
Centre de Physique Théorique, Ecole Polytechnique, CNRS, Univ. Paris-Saclay, 91128 Palaiseau, France.
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany.
Sci Rep. 2016 Feb 1;6:19728. doi: 10.1038/srep19728.
The result of a physical measurement depends on the time scale of the experimental probe. In solid-state systems, this simple quantum mechanical principle has far-reaching consequences: the interplay of several degrees of freedom close to charge, spin or orbital instabilities combined with the disparity of the time scales associated to their fluctuations can lead to seemingly contradictory experimental findings. A particularly striking example is provided by systems of adatoms adsorbed on semiconductor surfaces where different experiments--angle-resolved photoemission, scanning tunneling microscopy and core-level spectroscopy--suggest different ordering phenomena. Using most recent first principles many-body techniques, we resolve this puzzle by invoking the time scales of fluctuations when approaching the different instabilities. These findings suggest a re-interpretation of ordering phenomena and their fluctuations in a wide class of solid-state systems ranging from organic materials to high-temperature superconducting cuprates.
物理测量的结果取决于实验探测的时间尺度。在固态系统中,这一简单的量子力学原理有着深远的影响:接近电荷、自旋或轨道不稳定性的几个自由度之间的相互作用,再加上与其涨落相关的时间尺度的差异,可能导致看似相互矛盾的实验结果。一个特别显著的例子是吸附在半导体表面的吸附原子系统,在该系统中,不同的实验——角分辨光电子能谱、扫描隧道显微镜和芯能级光谱——表明了不同的有序现象。利用最新的第一性原理多体技术,我们在接近不同不稳定性时通过调用涨落的时间尺度来解决这个难题。这些发现表明,对于从有机材料到高温超导铜酸盐等广泛的固态系统中的有序现象及其涨落需要重新解释。