Melo Nielda K G, Bianchetti Ricardo E, Lira Bruno S, Oliveira Paulo M R, Zuccarelli Rafael, Dias Devisson L O, Demarco Diego, Peres Lazaro E P, Rossi Magdalena, Freschi Luciano
Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.).
Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
Plant Physiol. 2016 Apr;170(4):2278-94. doi: 10.1104/pp.16.00023. Epub 2016 Feb 1.
The transition from etiolated to green seedlings involves the conversion of etioplasts into mature chloroplasts via a multifaceted, light-driven process comprising multiple, tightly coordinated signaling networks. Here, we demonstrate that light-induced greening and chloroplast differentiation in tomato (Solanum lycopersicum) seedlings are mediated by an intricate cross talk among phytochromes, nitric oxide (NO), ethylene, and auxins. Genetic and pharmacological evidence indicated that either endogenously produced or exogenously applied NO promotes seedling greening by repressing ethylene biosynthesis and inducing auxin accumulation in tomato cotyledons. Analysis performed in hormonal tomato mutants also demonstrated that NO production itself is negatively and positively regulated by ethylene and auxins, respectively. Representing a major biosynthetic source of NO in tomato cotyledons, nitrate reductase was shown to be under strict control of both phytochrome and hormonal signals. A close NO-phytochrome interaction was revealed by the almost complete recovery of the etiolated phenotype of red light-grown seedlings of the tomato phytochrome-deficient aurea mutant upon NO fumigation. In this mutant, NO supplementation induced cotyledon greening, chloroplast differentiation, and hormonal and gene expression alterations similar to those detected in light-exposed wild-type seedlings. NO negatively impacted the transcript accumulation of genes encoding phytochromes, photomorphogenesis-repressor factors, and plastid division proteins, revealing that this free radical can mimic transcriptional changes typically triggered by phytochrome-dependent light perception. Therefore, our data indicate that negative and positive regulatory feedback loops orchestrate ethylene-NO and auxin-NO interactions, respectively, during the conversion of colorless etiolated seedlings into green, photosynthetically competent young plants.
从黄化苗到绿色幼苗的转变涉及到通过一个多方面的、光驱动的过程将黄化质体转化为成熟叶绿体,该过程包括多个紧密协调的信号网络。在这里,我们证明了番茄(Solanum lycopersicum)幼苗中光诱导的绿化和叶绿体分化是由光敏色素、一氧化氮(NO)、乙烯和生长素之间复杂的相互作用介导的。遗传和药理学证据表明,内源性产生或外源性施加的NO通过抑制乙烯生物合成和诱导番茄子叶中生长素积累来促进幼苗绿化。在激素番茄突变体中进行的分析还表明,NO的产生本身分别受到乙烯和生长素的负调控和正调控。硝酸还原酶是番茄子叶中NO的主要生物合成来源,它受到光敏色素和激素信号的严格控制。通过对番茄光敏色素缺陷型金黄色突变体的红光生长幼苗进行NO熏蒸后,其黄化表型几乎完全恢复,揭示了NO与光敏色素之间的紧密相互作用。在这个突变体中,补充NO诱导子叶绿化、叶绿体分化以及激素和基因表达变化,类似于在光照野生型幼苗中检测到的变化。NO对编码光敏色素、光形态建成抑制因子和质体分裂蛋白的基因转录积累产生负面影响,表明这种自由基可以模拟通常由光敏色素依赖性光感知触发的转录变化。因此,我们的数据表明,在无色黄化幼苗转化为绿色、具有光合能力的幼嫩植物的过程中,负调控和正调控反馈环分别协调乙烯-NO和生长素-NO的相互作用。