Suppr超能文献

从单轮式移动机器人的自适应神经网络输出反馈控制中学习。

Learning from adaptive neural network output feedback control of a unicycle-type mobile robot.

作者信息

Zeng Wei, Wang Qinghui, Liu Fenglin, Wang Ying

机构信息

School of Mechanical & Electrical Engineering, Longyan University, Longyan 364012, China.

School of Mechanical & Electrical Engineering, Longyan University, Longyan 364012, China.

出版信息

ISA Trans. 2016 Mar;61:337-347. doi: 10.1016/j.isatra.2016.01.005. Epub 2016 Jan 29.

Abstract

This paper studies learning from adaptive neural network (NN) output feedback control of nonholonomic unicycle-type mobile robots. The major difficulties are caused by the unknown robot system dynamics and the unmeasurable states. To overcome these difficulties, a new adaptive control scheme is proposed including designing a new adaptive NN output feedback controller and two high-gain observers. It is shown that the stability of the closed-loop robot system and the convergence of tracking errors are guaranteed. The unknown robot system dynamics can be approximated by radial basis function NNs. When repeating same or similar control tasks, the learned knowledge can be recalled and reused to achieve guaranteed stability and better control performance, thereby avoiding the tremendous repeated training process of NNs.

摘要

本文研究非完整单轮式移动机器人的自适应神经网络(NN)输出反馈控制学习。主要困难源于未知的机器人系统动力学和不可测量的状态。为克服这些困难,提出了一种新的自适应控制方案,包括设计一种新的自适应NN输出反馈控制器和两个高增益观测器。结果表明,闭环机器人系统的稳定性和跟踪误差的收敛性得到了保证。未知的机器人系统动力学可以用径向基函数神经网络来近似。当重复相同或相似的控制任务时,可以调用和重用所学知识,以实现有保证的稳定性和更好的控制性能,从而避免神经网络的大量重复训练过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验