Huerre A, Jullien M-C, Theodoly O, Valignat M-P
MMN, UMR CNRS Gulliver 7083, PSL research University, ESPCI ParisTech, 10 rue Vauquelin, F-75005 Paris, France.
LAI, INSERM UMR S 1067, CNRS UMR 7333, Aix-Marseille Universite 13009 Marseille, France.
Lab Chip. 2016 Mar 7;16(5):911-6. doi: 10.1039/c5lc01417d.
The travel of droplets, bubbles, vesicles, capsules, living cells or small organisms in microchannels is a hallmark in microfluidics applications. A full description of the dynamics of such objects requires a quantitative understanding of the complex hydrodynamic and interfacial interactions between objects and channel walls. In this paper, we present an interferometric method that allows absolute topographic reconstruction of the interspace between an object and channel walls for objects confined in microfluidic channels. Wide field microscopic imaging in reflection interference contrast mode (RICM) is directly performed at the bottom wall of microfluidic chips. Importantly, we show that the reflections at both the lower and upper surface of the microchannel have to be considered in the quantitative analysis of the optical signal. More precisely, the contribution of the reflection at the upper surface is weighted depending on the light coherence length and channel height. Using several wavelengths and illumination apertures, our method allows reconstructing the topography of thin films on channel walls in a range of 0-500 nm, with a precision as accurate as 2 nm for the thinnest films. A complete description of the protocol is exemplified for oil in water droplets travelling in channels of height 10-400 μm at a speed up to 5 mm s(-1).
液滴、气泡、囊泡、胶囊、活细胞或小生物体在微通道中的移动是微流控应用的一个标志。要全面描述此类物体的动力学,需要定量了解物体与通道壁之间复杂的流体动力学和界面相互作用。在本文中,我们提出了一种干涉测量方法,该方法可对微流控通道中受限物体与通道壁之间的间隙进行绝对地形重建。反射干涉对比模式(RICM)下的宽场显微成像直接在微流控芯片的底壁上进行。重要的是,我们表明在光信号的定量分析中必须考虑微通道上下表面的反射。更确切地说,上表面反射的贡献会根据光相干长度和通道高度进行加权。使用多种波长和照明孔径,我们的方法能够重建通道壁上0至500纳米范围内薄膜的地形,对于最薄的薄膜,精度可达2纳米。本文以在高度为10至400微米的通道中以高达5毫米/秒的速度移动的水包油液滴为例,对该方案进行了完整描述。