Rosenberg D, Marino R, Herbert C, Pouquet A
Oak Ridge National Laboratory, National Center for Computational Sciences, P.O. Box 2008, 37831, Oak Ridge, TN, USA.
SciTec, Inc., 100 Wall St., 08540, Princeton, NJ, USA.
Eur Phys J E Soft Matter. 2016 Jan;39(1):8. doi: 10.1140/epje/i2016-16008-7. Epub 2016 Jan 29.
We study rotating stratified turbulence (RST) making use of numerical data stemming from a large parametric study varying the Reynolds, Froude and Rossby numbers, Re, Fr and Ro in a broad range of values. The computations are performed using periodic boundary conditions on grids of 1024(3) points, with no modeling of the small scales, no forcing and with large-scale random initial conditions for the velocity field only, and there are altogether 65 runs analyzed in this paper. The buoyancy Reynolds number defined as R(B) = ReFr2 varies from negligible values to ≈ 10(5), approaching atmospheric or oceanic regimes. This preliminary analysis deals with the variation of characteristic time scales of RST with dimensionless parameters, focusing on the role played by the partition of energy between the kinetic and potential modes, as a key ingredient for modeling the dynamics of such flows. We find that neither rotation nor the ratio of the Brunt-Väisälä frequency to the inertial frequency seem to play a major role in the absence of forcing in the global dynamics of the small-scale kinetic and potential modes. Specifically, in these computations, mostly in regimes of wave turbulence, characteristic times based on the ratio of energy to dissipation of the velocity and temperature fluctuations, T(V) and T(P), vary substantially with parameters. Their ratio γ=T(V)/T(P) follows roughly a bell-shaped curve in terms of Richardson number Ri. It reaches a plateau - on which time scales become comparable, γ≈0.6 - when the turbulence has significantly strengthened, leading to numerous destabilization events together with a tendency towards an isotropization of the flow.
我们利用数值数据研究旋转分层湍流(RST),这些数据来自一项大型参数研究,该研究在很宽的取值范围内改变雷诺数、弗劳德数和罗斯比数,即Re、Fr和Ro。计算是在1024(3)个点的网格上使用周期性边界条件进行的,不考虑小尺度的建模,没有外力作用,并且仅对速度场采用大尺度随机初始条件,本文总共分析了65次运行。定义为R(B)=ReFr2的浮力雷诺数从可忽略不计的值变化到≈10(5),接近大气或海洋状态。这项初步分析涉及RST的特征时间尺度随无量纲参数的变化,重点关注动能和势能模式之间能量分配所起的作用,这是对此类流动动力学进行建模的关键因素。我们发现,在小尺度动能和势能模式的全局动力学中,在没有外力作用的情况下,旋转以及布伦特-维萨拉频率与惯性频率之比似乎都不起主要作用。具体而言,在这些计算中,大多处于波湍流状态,基于速度和温度波动的能量与耗散之比的特征时间T(V)和T(P)随参数有很大变化。它们的比值γ=T(V)/T(P)在理查森数Ri方面大致呈钟形曲线。当湍流显著增强时,它会达到一个平台期——此时时间尺度变得可比,γ≈0.6——导致大量失稳事件以及流动趋向各向同性的趋势。