Vincent Isabel M, Ehmann David E, Mills Scott D, Perros Manos, Barrett Michael P
University of Glasgow, Glasgow, United Kingdom.
AstraZeneca, Waltham, Massachusetts, USA.
Antimicrob Agents Chemother. 2016 Mar 25;60(4):2281-91. doi: 10.1128/AAC.02109-15. Print 2016 Apr.
Deciphering the mode of action (MOA) of new antibiotics discovered through phenotypic screening is of increasing importance. Metabolomics offers a potentially rapid and cost-effective means of identifying modes of action of drugs whose effects are mediated through changes in metabolism. Metabolomics techniques also collect data on off-target effects and drug modifications. Here, we present data from an untargeted liquid chromatography-mass spectrometry approach to identify the modes of action of eight compounds: 1-[3-fluoro-4-(5-methyl-2,4-dioxo-pyrimidin-1-yl)phenyl]-3-[2-(trifluoromethyl)phenyl]urea (AZ1), 2-(cyclobutylmethoxy)-5'-deoxyadenosine, triclosan, fosmidomycin, CHIR-090, carbonyl cyanidem-chlorophenylhydrazone (CCCP), 5-chloro-2-(methylsulfonyl)-N-(1,3-thiazol-2-yl)-4-pyrimidinecarboxamide (AZ7), and ceftazidime. Data analysts were blind to the compound identities but managed to identify the target as thymidylate kinase for AZ1, isoprenoid biosynthesis for fosmidomycin, acyl-transferase for CHIR-090, and DNA metabolism for 2-(cyclobutylmethoxy)-5'-deoxyadenosine. Changes to cell wall metabolites were seen in ceftazidime treatments, although other changes, presumably relating to off-target effects, dominated spectral outputs in the untargeted approach. Drugs which do not work through metabolic pathways, such as the proton carrier CCCP, have no discernible impact on the metabolome. The untargeted metabolomics approach also revealed modifications to two compounds, namely, fosmidomycin and AZ7. An untreated control was also analyzed, and changes to the metabolome were seen over 4 h, highlighting the necessity for careful controls in these types of studies. Metabolomics is a useful tool in the analysis of drug modes of action and can complement other technologies already in use.
解读通过表型筛选发现的新型抗生素的作用模式(MOA)变得越来越重要。代谢组学提供了一种潜在的快速且经济高效的方法,用于识别其作用通过代谢变化介导的药物的作用模式。代谢组学技术还收集有关脱靶效应和药物修饰的数据。在这里,我们展示了来自非靶向液相色谱 - 质谱方法的数据,以识别八种化合物的作用模式:1 - [3 - 氟 - 4 - (5 - 甲基 - 2,4 - 二氧代 - 嘧啶 - 1 - 基)苯基] - 3 - [2 - (三氟甲基)苯基]脲(AZ1)、2 - (环丁基甲氧基) - 5'-脱氧腺苷、三氯生、磷霉素、CHIR - 090、羰基氰化物 - m - 氯苯腙(CCCP)、5 - 氯 - 2 - (甲基磺酰基) - N - (1,3 - 噻唑 - 2 - 基) - 4 - 嘧啶甲酰胺(AZ7)和头孢他啶。数据分析师对化合物的身份不知情,但成功确定AZ1的靶点为胸苷酸激酶,磷霉素的靶点为类异戊二烯生物合成,CHIR - 090的靶点为酰基转移酶,以及2 - (环丁基甲氧基) - 5'-脱氧腺苷的靶点为DNA代谢。在头孢他啶处理中观察到细胞壁代谢物的变化,尽管在非靶向方法中,其他可能与脱靶效应相关的变化主导了光谱输出。不通过代谢途径起作用的药物,如质子载体CCCP,对代谢组没有明显影响。非靶向代谢组学方法还揭示了两种化合物,即磷霉素和AZ7的修饰。还分析了未处理的对照,并且在4小时内观察到代谢组的变化,突出了在这类研究中进行仔细对照的必要性。代谢组学是分析药物作用模式的有用工具,并且可以补充现有的其他技术。