Zampieri Mattia, Zimmermann Michael, Claassen Manfred, Sauer Uwe
Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland.
Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland.
Cell Rep. 2017 May 9;19(6):1214-1228. doi: 10.1016/j.celrep.2017.04.002.
Microbes have shown a remarkable ability in evading the killing actions of antimicrobial agents, such that treatment of bacterial infections represents once more an urgent global challenge. Understanding the initial bacterial response to antimicrobials may reveal intrinsic tolerance mechanisms to antibiotics and suggest alternative and less conventional therapeutic strategies. Here, we used mass spectrometry-based metabolomics to monitor the immediate metabolic response of Escherichia coli to a variety of antibiotic perturbations. We show that rapid metabolic changes can reflect drug mechanisms of action and reveal the active role of metabolism in mediating the first stress response to antimicrobials. We uncovered a role for ammonium imbalance in aggravating chloramphenicol toxicity and the essential function of deoxythymidine 5'-diphosphate (dTDP)-rhamnose synthesis for the immediate transcriptional upregulation of GyrA in response to quinolone antibiotics. Our results suggest bacterial metabolism as an attractive target to interfere with the early bacterial response to antibiotic treatments and reduce the probability for survival and eventual evolution of antibiotic resistance.
微生物在逃避抗菌剂的杀灭作用方面表现出了非凡的能力,以至于细菌感染的治疗再次成为一项紧迫的全球挑战。了解细菌对抗菌剂的初始反应可能会揭示对抗生素的内在耐受机制,并提出替代的、不太传统的治疗策略。在此,我们使用基于质谱的代谢组学来监测大肠杆菌对各种抗生素干扰的即时代谢反应。我们表明,快速的代谢变化可以反映药物的作用机制,并揭示代谢在介导对抗菌剂的首次应激反应中的积极作用。我们发现铵失衡在加重氯霉素毒性方面的作用,以及脱氧胸苷5'-二磷酸(dTDP)-鼠李糖合成对于响应喹诺酮类抗生素时GyrA的即时转录上调的重要功能。我们的结果表明,细菌代谢是一个有吸引力的靶点,可用于干扰细菌对抗生素治疗的早期反应,并降低抗生素耐药性存活和最终进化的可能性。