Suppr超能文献

推进抗癌药物发现:利用代谢组学和机器学习通过模式识别进行作用机制预测。

Advancing Anticancer Drug Discovery: Leveraging Metabolomics and Machine Learning for Mode of Action Prediction by Pattern Recognition.

作者信息

Saoud Mohamad, Grau Jan, Rennert Robert, Mueller Thomas, Yousefi Mohammad, Davari Mehdi D, Hause Bettina, Csuk René, Rashan Luay, Grosse Ivo, Tissier Alain, Wessjohann Ludger A, Balcke Gerd U

机构信息

Leibniz Institute of Plant Biochemistry, Dept. of Bioorganic Chemistry, Weinberg 3, 06120, Halle (Saale), Germany.

Martin Luther University Halle-Wittenberg, Institute of Computer Science, 06120, Halle (Saale), Germany.

出版信息

Adv Sci (Weinh). 2024 Dec;11(47):e2404085. doi: 10.1002/advs.202404085. Epub 2024 Oct 21.

Abstract

A bottleneck in the development of new anti-cancer drugs is the recognition of their mode of action (MoA). Metabolomics combined with machine learning allowed to predict MoAs of novel anti-proliferative drug candidates, focusing on human prostate cancer cells (PC-3). As proof of concept, 38 drugs are studied with known effects on 16 key processes of cancer metabolism, profiling low molecular weight intermediates of the central carbon and cellular energy metabolism (CCEM) by LC-MS/MS. These metabolic patterns unveiled distinct MoAs, enabling accurate MoA predictions for novel agents by machine learning. The transferability of MoA predictions based on PC-3 cell treatments is validated with two other cancer cell models, i.e., breast cancer and Ewing's sarcoma, and show that correct MoA predictions for alternative cancer cells are possible, but still at some expense of prediction quality. Furthermore, metabolic profiles of treated cells yield insights into intracellular processes, exemplified for drugs inducing different types of mitochondrial dysfunction. Specifically, it is predicted that pentacyclic triterpenes inhibit oxidative phosphorylation and affect phospholipid biosynthesis, as confirmed by respiration parameters, lipidomics, and molecular docking. Using biochemical insights from individual drug treatments, this approach offers new opportunities, including the optimization of combinatorial drug applications.

摘要

新型抗癌药物研发中的一个瓶颈是对其作用模式(MoA)的识别。代谢组学与机器学习相结合,能够预测新型抗增殖候选药物的作用模式,研究重点是人类前列腺癌细胞(PC-3)。作为概念验证,研究了38种对癌症代谢的16个关键过程有已知作用的药物,通过液相色谱-串联质谱法(LC-MS/MS)对中心碳和细胞能量代谢(CCEM)的低分子量中间体进行分析。这些代谢模式揭示了不同的作用模式,从而能够通过机器学习对新型药物进行准确的作用模式预测。基于PC-3细胞处理的作用模式预测的可转移性在另外两种癌细胞模型(即乳腺癌和尤因肉瘤)中得到验证,结果表明对其他癌细胞进行正确的作用模式预测是可能的,但预测质量仍会有所损失。此外,处理后细胞的代谢谱能够深入了解细胞内过程,以诱导不同类型线粒体功能障碍的药物为例。具体而言,预测五环三萜类化合物会抑制氧化磷酸化并影响磷脂生物合成,这一点已通过呼吸参数、脂质组学和分子对接得到证实。利用个别药物处理的生化见解,这种方法提供了新的机会,包括优化联合药物应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7824/11653622/06288bc1a659/ADVS-11-2404085-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验