Suppr超能文献

用于主要生物多样性数据的地理空间数据质量REST应用程序编程接口。

The geospatial data quality REST API for primary biodiversity data.

作者信息

Otegui Javier, Guralnick Robert P

机构信息

Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.

出版信息

Bioinformatics. 2016 Jun 1;32(11):1755-7. doi: 10.1093/bioinformatics/btw057. Epub 2016 Feb 1.

Abstract

UNLABELLED

We present a REST web service to assess the geospatial quality of primary biodiversity data. It enables access to basic and advanced functions to detect completeness and consistency issues as well as general errors in the provided record or set of records. The API uses JSON for data interchange and efficient parallelization techniques for fast assessments of large datasets.

AVAILABILITY AND IMPLEMENTATION

The Geospatial Data Quality API is part of the VertNet set of APIs. It can be accessed at http://api-geospatial.vertnet-portal.appspot.com/geospatial and is already implemented in the VertNet data portal for quality reporting. Source code is freely available under GPL license from http://www.github.com/vertnet/api-geospatial

CONTACT

javier.otegui@gmail.com or rguralnick@flmnh.ufl.edu

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

未标注

我们展示了一个用于评估主要生物多样性数据地理空间质量的REST网络服务。它能够访问基本和高级功能,以检测所提供记录或记录集的完整性和一致性问题以及一般错误。该应用程序编程接口(API)使用JSON进行数据交换,并采用高效的并行化技术对大型数据集进行快速评估。

可用性与实现

地理空间数据质量API是VertNet API集的一部分。可通过http://api-geospatial.vertnet-portal.appspot.com/geospatial访问,并且已在VertNet数据门户中实现用于质量报告。源代码可根据GPL许可从http://www.github.com/vertnet/api-geospatial免费获取。

联系方式

javier.otegui@gmail.comrguralnick@flmnh.ufl.edu

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

1
The geospatial data quality REST API for primary biodiversity data.
Bioinformatics. 2016 Jun 1;32(11):1755-7. doi: 10.1093/bioinformatics/btw057. Epub 2016 Feb 1.
2
The Ensembl REST API: Ensembl Data for Any Language.
Bioinformatics. 2015 Jan 1;31(1):143-5. doi: 10.1093/bioinformatics/btu613. Epub 2014 Sep 17.
3
JASPAR RESTful API: accessing JASPAR data from any programming language.
Bioinformatics. 2018 May 1;34(9):1612-1614. doi: 10.1093/bioinformatics/btx804.
4
bdvis: visualizing biodiversity data in R.
Bioinformatics. 2016 Oct 1;32(19):3049-50. doi: 10.1093/bioinformatics/btw333. Epub 2016 Jun 10.
5
Programmatic access to logical models in the Cell Collective modeling environment via a REST API.
Biosystems. 2016 Jan;139:12-6. doi: 10.1016/j.biosystems.2015.11.005. Epub 2015 Nov 14.
6
Phylesystem: a git-based data store for community-curated phylogenetic estimates.
Bioinformatics. 2015 Sep 1;31(17):2794-800. doi: 10.1093/bioinformatics/btv276. Epub 2015 May 4.
7
AlgoRun: a Docker-based packaging system for platform-agnostic implemented algorithms.
Bioinformatics. 2016 Aug 1;32(15):2396-8. doi: 10.1093/bioinformatics/btw120. Epub 2016 Mar 2.
8
BIDDSAT: visualizing the content of biodiversity data publishers in the Global Biodiversity Information Facility network.
Bioinformatics. 2012 Aug 15;28(16):2207-8. doi: 10.1093/bioinformatics/bts359. Epub 2012 Jun 23.
9
Visualizing the geography of genetic variants.
Bioinformatics. 2017 Feb 15;33(4):594-595. doi: 10.1093/bioinformatics/btw643.
10
PyPDB: a Python API for the Protein Data Bank.
Bioinformatics. 2016 Jan 1;32(1):159-60. doi: 10.1093/bioinformatics/btv543. Epub 2015 Sep 14.

引用本文的文献

1
Research applications of primary biodiversity databases in the digital age.
PLoS One. 2019 Sep 11;14(9):e0215794. doi: 10.1371/journal.pone.0215794. eCollection 2019.
2
An effective biomedical data migration tool from resource description framework to JSON.
Database (Oxford). 2019 Jan 1;2019. doi: 10.1093/database/baz088.
3
A conceptual framework for quality assessment and management of biodiversity data.
PLoS One. 2017 Jun 28;12(6):e0178731. doi: 10.1371/journal.pone.0178731. eCollection 2017.

本文引用的文献

1
Estimating species diversity and distribution in the era of Big Data: to what extent can we trust public databases?
Glob Ecol Biogeogr. 2015 Aug;24(8):973-984. doi: 10.1111/geb.12326. Epub 2015 May 25.
2
The GBIF integrated publishing toolkit: facilitating the efficient publishing of biodiversity data on the internet.
PLoS One. 2014 Aug 6;9(8):e102623. doi: 10.1371/journal.pone.0102623. eCollection 2014.
3
A specialist's audit of aggregated occurrence records: An 'aggregator's' perspective.
Zookeys. 2013 May 30(305):67-76. doi: 10.3897/zookeys.305.5438. Print 2013.
4
Darwin Core: an evolving community-developed biodiversity data standard.
PLoS One. 2012;7(1):e29715. doi: 10.1371/journal.pone.0029715. Epub 2012 Jan 6.
5
Distorted views of biodiversity: spatial and temporal bias in species occurrence data.
PLoS Biol. 2010 Jun 1;8(6):e1000385. doi: 10.1371/journal.pbio.1000385.
6
Biodiversity informatics: automated approaches for documenting global biodiversity patterns and processes.
Bioinformatics. 2009 Feb 15;25(4):421-8. doi: 10.1093/bioinformatics/btn659. Epub 2009 Jan 6.
7
How global is the global biodiversity information facility?
PLoS One. 2007 Nov 7;2(11):e1124. doi: 10.1371/journal.pone.0001124.
8
Biodiversity informatics.
Annu Rev Entomol. 2007;52:421-38. doi: 10.1146/annurev.ento.52.110405.091259.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验