Suppr超能文献

生物多样性数据质量评估与管理的概念框架。

A conceptual framework for quality assessment and management of biodiversity data.

作者信息

Veiga Allan Koch, Saraiva Antonio Mauro, Chapman Arthur David, Morris Paul John, Gendreau Christian, Schigel Dmitry, Robertson Tim James

机构信息

University of São Paulo, Research Center on Biodiversity and Computing, São Paulo, São Paulo, Brazil.

Australian Biodiversity Information Services, Ballan, Victoria, Australia.

出版信息

PLoS One. 2017 Jun 28;12(6):e0178731. doi: 10.1371/journal.pone.0178731. eCollection 2017.

Abstract

The increasing availability of digitized biodiversity data worldwide, provided by an increasing number of institutions and researchers, and the growing use of those data for a variety of purposes have raised concerns related to the "fitness for use" of such data and the impact of data quality (DQ) on the outcomes of analyses, reports, and decisions. A consistent approach to assess and manage data quality is currently critical for biodiversity data users. However, achieving this goal has been particularly challenging because of idiosyncrasies inherent in the concept of quality. DQ assessment and management cannot be performed if we have not clearly established the quality needs from a data user's standpoint. This paper defines a formal conceptual framework to support the biodiversity informatics community allowing for the description of the meaning of "fitness for use" from a data user's perspective in a common and standardized manner. This proposed framework defines nine concepts organized into three classes: DQ Needs, DQ Solutions and DQ Report. The framework is intended to formalize human thinking into well-defined components to make it possible to share and reuse concepts of DQ needs, solutions and reports in a common way among user communities. With this framework, we establish a common ground for the collaborative development of solutions for DQ assessment and management based on data fitness for use principles. To validate the framework, we present a proof of concept based on a case study at the Museum of Comparative Zoology of Harvard University. In future work, we will use the framework to engage the biodiversity informatics community to formalize and share DQ profiles related to DQ needs across the community.

摘要

全球范围内,越来越多的机构和研究人员提供了数字化生物多样性数据,并且这些数据被用于各种目的的情况日益增多,这引发了人们对这些数据“适用性”以及数据质量(DQ)对分析、报告和决策结果影响的担忧。对于生物多样性数据用户而言,目前采用一致的方法来评估和管理数据质量至关重要。然而,由于质量概念本身存在的特性,实现这一目标极具挑战性。如果我们没有从数据用户的角度明确确立质量需求,就无法进行DQ评估和管理。本文定义了一个正式的概念框架,以支持生物多样性信息学领域,从而能够以通用且标准化的方式从数据用户的角度描述“适用性”的含义。这个提议的框架定义了九个概念,分为三类:DQ需求、DQ解决方案和DQ报告。该框架旨在将人类思维形式化为定义明确的组件,以便能够在用户群体之间以通用的方式共享和重用DQ需求、解决方案和报告的概念。借助这个框架,我们基于数据适用性原则,为协作开发DQ评估和管理解决方案奠定了共同基础。为了验证该框架,我们基于哈佛大学比较动物学博物馆的一个案例研究给出了一个概念验证。在未来的工作中,我们将使用该框架促使生物多样性信息学领域将与DQ需求相关的DQ概况形式化并在整个领域内共享。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验