González-Navarrete Patricio, Schlangen Maria, Wu Xiao-Nan, Schwarz Helmut
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany), Fax.
Chemistry. 2016 Feb 24;22(9):3077-83. doi: 10.1002/chem.201504929. Epub 2016 Feb 2.
The ion/molecule reactions of molybdenum and tungsten dioxide cations with ethanol have been studied by Fourier transform ion-cyclotron resonance mass spectrometry (FT-ICR MS) and density functional theory (DFT) calculations. Dehydration of ethanol has been found as the dominant reaction channel, while generation of the ethyl cation corresponds to a minor product. Cleary, the reactions are mainly governed by the Lewis acidity of the metal center. Computational results, together with isotopic labeling experiments, show that the dehydration of ethanol can proceed either through a conventional concerted [1,2]-elimination mechanism or a step-wise process; the latter occurs via a hydroxyethoxy intermediate. Formation of C2 H5 (+) takes place by transfer of OH(-) from ethanol to the metal center of MO2 (+) . The molybdenum and tungsten dioxide cations exhibit comparable reactivities toward ethanol, and this is reflected in similar reaction rate constants and branching ratios.
通过傅里叶变换离子回旋共振质谱(FT-ICR MS)和密度泛函理论(DFT)计算研究了二氧化钼和二氧化钨阳离子与乙醇的离子/分子反应。已发现乙醇脱水是主要反应通道,而乙基阳离子的生成对应于次要产物。显然,这些反应主要受金属中心的路易斯酸度控制。计算结果与同位素标记实验表明,乙醇脱水可通过传统的协同[1,2]消除机制或分步过程进行;后者通过羟基乙氧基中间体发生。C2H5(+)的形成是通过OH(-)从乙醇转移到MO2(+)的金属中心。二氧化钼和二氧化钨阳离子对乙醇表现出相当的反应活性,这反映在相似的反应速率常数和分支比上。