Baloglou Aristeidis, Ončák Milan, van der Linde Christian, Beyer Martin K
Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
Top Catal. 2018;61(1):20-27. doi: 10.1007/s11244-017-0864-3. Epub 2017 Nov 27.
Molybdenum sulfide is a potent hydrogen evolution catalyst, and is discussed as a replacement of platinum in large-scale electrochemical hydrogen production. To learn more about the elementary steps of MoS production by sputtering in the presence of dimethyl disulfide (DMDS), the reactions of Mo , x = 1-3, with DMDS are studied by Fourier transform ion cyclotron resonance mass spectrometry and density functional theory calculations. A rich variety of products composed of molybdenum, sulfur, carbon and hydrogen was observed. MoS species are formed in the first reaction step, together with products containing carbon and hydrogen. The calculations indicate that the strong Mo-S bonds are formed preferentially, followed by Mo-C bonds. Hydrogen is exclusively bound to carbon atoms, i.e. no insertion of a molybdenum atom into a C-H bond is observed. The reactions are efficient and highly exothermic, explaining the rich chemistry observed in the experiment.
硫化钼是一种高效的析氢催化剂,被认为是大规模电化学制氢中铂的替代物。为了深入了解在二甲基二硫(DMDS)存在下通过溅射制备MoS的基本步骤,利用傅里叶变换离子回旋共振质谱和密度泛函理论计算研究了Mo(x = 1 - 3)与DMDS的反应。观察到了由钼、硫、碳和氢组成的多种产物。在第一步反应中形成了MoS物种,同时还有含碳和氢的产物。计算结果表明,优先形成强Mo - S键,随后是Mo - C键。氢仅与碳原子结合,即未观察到钼原子插入C - H键的情况。这些反应高效且高度放热,这解释了实验中观察到的丰富化学反应。