Wu Yirong, Abbey Craig K, Chen Xianqiao, Liu Jie, Page David C, Alagoz Oguzhan, Peissig Peggy, Onitilo Adedayo A, Burnside Elizabeth S
University of Wisconsin-Madison , Department of Radiology, 600 Highland Avenue, Madison, Wisconsin 53792, United States.
University of California-Santa Barbara , Department of Psychological and Brain Sciences, 251 UCEN Road, Santa Barbara, California 93106, United States.
J Med Imaging (Bellingham). 2015 Oct;2(4):041005. doi: 10.1117/1.JMI.2.4.041005. Epub 2015 Aug 17.
Combining imaging and genetic information to predict disease presence and progression is being codified into an emerging discipline called "radiogenomics." Optimal evaluation methodologies for radiogenomics have not been well established. We aim to develop a decision framework based on utility analysis to assess predictive models for breast cancer diagnosis. We garnered Gail risk factors, single nucleotide polymorphisms (SNPs), and mammographic features from a retrospective case-control study. We constructed three logistic regression models built on different sets of predictive features: (1) Gail, (2) Gail + Mammo, and (3) Gail + Mammo + SNP. Then we generated receiver operating characteristic (ROC) curves for three models. After we assigned utility values for each category of outcomes (true negatives, false positives, false negatives, and true positives), we pursued optimal operating points on ROC curves to achieve maximum expected utility of breast cancer diagnosis. We performed McNemar's test based on threshold levels at optimal operating points, and found that SNPs and mammographic features played a significant role in breast cancer risk estimation. Our study comprising utility analysis and McNemar's test provides a decision framework to evaluate predictive models in breast cancer risk estimation.
将影像学和基因信息相结合以预测疾病的存在和进展,正被编纂成一门名为“放射基因组学”的新兴学科。放射基因组学的最佳评估方法尚未完全确立。我们旨在基于效用分析开发一个决策框架,以评估乳腺癌诊断的预测模型。我们从一项回顾性病例对照研究中收集了盖尔风险因素、单核苷酸多态性(SNP)和乳房X线摄影特征。我们构建了三个基于不同预测特征集的逻辑回归模型:(1)盖尔模型,(2)盖尔+乳房X线摄影模型,以及(3)盖尔+乳房X线摄影+SNP模型。然后我们生成了这三个模型的受试者工作特征(ROC)曲线。在为每类结果(真阴性、假阳性、假阴性和真阳性)分配效用值后,我们在ROC曲线上寻找最佳操作点,以实现乳腺癌诊断的最大预期效用。我们基于最佳操作点的阈值水平进行了麦克尼马尔检验,发现SNP和乳房X线摄影特征在乳腺癌风险评估中发挥了重要作用。我们包含效用分析和麦克尼马尔检验的研究提供了一个决策框架,用于评估乳腺癌风险评估中的预测模型。