Suppr超能文献

在用于平面核成像的具备搜索功能的模型观察者中考虑解剖学噪声。

Accounting for anatomical noise in search-capable model observers for planar nuclear imaging.

作者信息

Sen Anando, Gifford Howard C

机构信息

University of Houston , Department of Biomedical Engineering, 3605 Cullen Boulevard, Houston, Texas 77004, United States.

出版信息

J Med Imaging (Bellingham). 2016 Jan;3(1):015502. doi: 10.1117/1.JMI.3.1.015502. Epub 2016 Jan 26.

Abstract

Model observers intended to predict the diagnostic performance of human observers should account for the effects of both quantum and anatomical noise. We compared the abilities of several visual-search (VS) and scanning Hotelling-type models to account for anatomical noise in a localization receiver operating characteristic (LROC) study involving simulated nuclear medicine images. Our VS observer invoked a two-stage process of search and analysis. The images featured lesions in the prostate and pelvic lymph nodes. Lesion contrast and the geometric resolution and sensitivity of the imaging collimator were the study variables. A set of anthropomorphic mathematical phantoms was imaged with an analytic projector based on eight parallel-hole collimators with different sensitivity and resolution properties. The LROC study was conducted with human observers and the channelized nonprewhitening, channelized Hotelling (CH) and VS model observers. The CH observer was applied in a "background-known-statistically" protocol while the VS observer performed a quasi-background-known-exactly task. Both of these models were applied with and without internal noise in the decision variables. A perceptual search threshold was also tested with the VS observer. The model observers without inefficiencies failed to mimic the average performance trend for the humans. The CH and VS observers with internal noise matched the humans primarily at low collimator sensitivities. With both internal noise and the search threshold, the VS observer attained quantitative agreement with the human observers. Computational efficiency is an important advantage of the VS observer.

摘要

旨在预测人类观察者诊断性能的模型观察者应考虑量子噪声和解剖噪声的影响。在一项涉及模拟核医学图像的定位接收器操作特性(LROC)研究中,我们比较了几种视觉搜索(VS)和扫描霍特林型模型考虑解剖噪声的能力。我们的VS观察者调用了一个搜索和分析的两阶段过程。图像的特征是前列腺和盆腔淋巴结中的病变。病变对比度以及成像准直器的几何分辨率和灵敏度是研究变量。使用基于具有不同灵敏度和分辨率特性的八个平行孔准直器的解析投影仪对一组拟人化数学体模进行成像。LROC研究由人类观察者以及通道化非白化、通道化霍特林(CH)和VS模型观察者进行。CH观察者应用于“背景已知统计”协议,而VS观察者执行准背景已知精确任务。这两种模型在决策变量中有无内部噪声的情况下均被应用。还对VS观察者测试了感知搜索阈值。没有低效性的模型观察者未能模拟人类的平均性能趋势。具有内部噪声的CH和VS观察者主要在低准直器灵敏度下与人类匹配。同时具有内部噪声和搜索阈值时,VS观察者与人类观察者达成了定量一致。计算效率是VS观察者的一个重要优势。

相似文献

1
Accounting for anatomical noise in search-capable model observers for planar nuclear imaging.
J Med Imaging (Bellingham). 2016 Jan;3(1):015502. doi: 10.1117/1.JMI.3.1.015502. Epub 2016 Jan 26.
2
Visual-search observers for assessing tomographic x-ray image quality.
Med Phys. 2016 Mar;43(3):1563-75. doi: 10.1118/1.4942485.
3
Task Equivalence for Model and Human-Observer Comparisons in SPECT Localization Studies.
IEEE Trans Nucl Sci. 2016 Jun;63(3):1426-1434. doi: 10.1109/TNS.2016.2542042. Epub 2016 May 19.
4
A visual-search model observer for multislice-multiview SPECT images.
Med Phys. 2013 Sep;40(9):092505. doi: 10.1118/1.4818824.
5
Human- and model-observer performance in ramp-spectrum noise: effects of regularization and object variability.
J Opt Soc Am A Opt Image Sci Vis. 2001 Mar;18(3):473-88. doi: 10.1364/josaa.18.000473.
6
Assessing CT acquisition parameters with visual-search model observers.
J Med Imaging (Bellingham). 2018 Apr;5(2):025501. doi: 10.1117/1.JMI.5.2.025501. Epub 2018 Apr 5.
8
A comparison of human and model observers in multislice LROC studies.
IEEE Trans Med Imaging. 2005 Feb;24(2):160-9. doi: 10.1109/tmi.2004.839362.
10
Efficient visual-search model observers for PET.
Br J Radiol. 2014 Jul;87(1039):20140017. doi: 10.1259/bjr.20140017. Epub 2014 May 16.

引用本文的文献

1
A 2D Synthesized Image Improves the 3D Search for Foveated Visual Systems.
IEEE Trans Med Imaging. 2023 Aug;42(8):2176-2188. doi: 10.1109/TMI.2023.3246005. Epub 2023 Aug 1.
2
Medical image quality metrics for foveated model observers.
J Med Imaging (Bellingham). 2021 Jul;8(4):041209. doi: 10.1117/1.JMI.8.4.041209. Epub 2021 Aug 16.
3
Foveated Model Observers for Visual Search in 3D Medical Images.
IEEE Trans Med Imaging. 2021 Mar;40(3):1021-1031. doi: 10.1109/TMI.2020.3044530. Epub 2021 Mar 2.
4
Virtual clinical trials in medical imaging: a review.
J Med Imaging (Bellingham). 2020 Jul;7(4):042805. doi: 10.1117/1.JMI.7.4.042805. Epub 2020 Apr 11.
5
Assessing CT acquisition parameters with visual-search model observers.
J Med Imaging (Bellingham). 2018 Apr;5(2):025501. doi: 10.1117/1.JMI.5.2.025501. Epub 2018 Apr 5.
7
Foveated Model Observers to predict human performance in 3D images.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10136. doi: 10.1117/12.2252952. Epub 2017 Mar 10.
8
Visual-search observers for assessing tomographic x-ray image quality.
Med Phys. 2016 Mar;43(3):1563-75. doi: 10.1118/1.4942485.

本文引用的文献

2
Efficient visual-search model observers for PET.
Br J Radiol. 2014 Jul;87(1039):20140017. doi: 10.1259/bjr.20140017. Epub 2014 May 16.
3
Channelized model observer for the detection and estimation of signals with unknown amplitude, orientation, and size.
J Opt Soc Am A Opt Image Sci Vis. 2013 Nov 1;30(11):2422-32. doi: 10.1364/JOSAA.30.002422.
4
A visual-search model observer for multislice-multiview SPECT images.
Med Phys. 2013 Sep;40(9):092505. doi: 10.1118/1.4818824.
6
A random-sum Wilcoxon statistic and its application to analysis of ROC and LROC data.
J Stat Plan Inference. 2011 Jan 1;141(1):335-344. doi: 10.1016/j.jspi.2010.06.011. Epub 2010 Jun 12.
7
Toward realistic and practical ideal observer (IO) estimation for the optimization of medical imaging systems.
IEEE Trans Med Imaging. 2008 Oct;27(10):1535-43. doi: 10.1109/TMI.2008.924641.
9
Evaluation of internal noise methods for Hotelling observer models.
Med Phys. 2007 Aug;34(8):3312-22. doi: 10.1118/1.2756603.
10
Recent advances in SPECT imaging.
J Nucl Med. 2007 Apr;48(4):661-73. doi: 10.2967/jnumed.106.032680.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验