Gifford H C
Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
Br J Radiol. 2014 Jul;87(1039):20140017. doi: 10.1259/bjr.20140017. Epub 2014 May 16.
Scanning model observers have been efficiently applied as a research tool to predict human-observer performance in F-18 positron emission tomography (PET). We investigated whether a visual-search (VS) observer could provide more reliable predictions with comparable efficiency.
Simulated two-dimensional images of a digital phantom featuring tumours in the liver, lungs and background soft tissue were prepared in coronal, sagittal and transverse display formats. A localization receiver operating characteristic (LROC) study quantified tumour detectability as a function of organ and format for two human observers, a channelized non-prewhitening (CNPW) scanning observer and two versions of a basic VS observer. The VS observers compared watershed (WS) and gradient-based search processes that identified focal uptake points for subsequent analysis with the CNPW observer. The model observers treated "background-known-exactly" (BKE) and "background-assumed-homogeneous" assumptions, either searching the entire organ of interest (Task A) or a reduced area that helped limit false positives (Task B). Performance was indicated by area under the LROC curve. Concordance in the localizations between observers was also analysed.
With the BKE assumption, both VS observers demonstrated consistent Pearson correlation with humans (Task A: 0.92 and Task B: 0.93) compared with the scanning observer (Task A: 0.77 and Task B: 0.92). The WS VS observer read 624 study test images in 2.0 min. The scanning observer required 0.7 min.
Computationally efficient VS can enhance the stability of statistical model observers with regard to uncertainties in PET tumour detection tasks.
VS models improve concordance with human observers.
扫描模型观察者已被有效地用作一种研究工具,以预测F-18正电子发射断层扫描(PET)中的人类观察者表现。我们研究了视觉搜索(VS)观察者是否能以相当的效率提供更可靠的预测。
制备了以冠状面、矢状面和横断面显示格式呈现肝脏、肺部肿瘤及背景软组织的数字体模的模拟二维图像。一项定位接收器操作特性(LROC)研究将两名人类观察者、一名通道化非白化(CNPW)扫描观察者和两个版本的基本VS观察者的肿瘤可检测性量化为器官和格式的函数。VS观察者比较了分水岭(WS)和基于梯度的搜索过程,这些过程识别出焦点摄取点以便随后与CNPW观察者进行分析。模型观察者采用“背景完全已知”(BKE)和“背景假定均匀”假设,要么搜索整个感兴趣器官(任务A),要么搜索有助于限制假阳性的缩小区域(任务B)。性能由LROC曲线下面积表示。还分析了观察者之间定位的一致性。
在BKE假设下,与扫描观察者(任务A:0.77和任务B:0.92)相比,两名VS观察者与人类观察者均表现出一致的皮尔逊相关性(任务A:0.92和任务B:0.93)。WS VS观察者在2.0分钟内读取了624张研究测试图像。扫描观察者需要0.7分钟。
计算效率高的VS可以增强统计模型观察者在PET肿瘤检测任务不确定性方面的稳定性。
VS模型提高了与人类观察者的一致性。