Suppr超能文献

用于正电子发射断层扫描(PET)的高效视觉搜索模型观察者

Efficient visual-search model observers for PET.

作者信息

Gifford H C

机构信息

Department of Biomedical Engineering, University of Houston, Houston, TX, USA.

出版信息

Br J Radiol. 2014 Jul;87(1039):20140017. doi: 10.1259/bjr.20140017. Epub 2014 May 16.

Abstract

OBJECTIVE

Scanning model observers have been efficiently applied as a research tool to predict human-observer performance in F-18 positron emission tomography (PET). We investigated whether a visual-search (VS) observer could provide more reliable predictions with comparable efficiency.

METHODS

Simulated two-dimensional images of a digital phantom featuring tumours in the liver, lungs and background soft tissue were prepared in coronal, sagittal and transverse display formats. A localization receiver operating characteristic (LROC) study quantified tumour detectability as a function of organ and format for two human observers, a channelized non-prewhitening (CNPW) scanning observer and two versions of a basic VS observer. The VS observers compared watershed (WS) and gradient-based search processes that identified focal uptake points for subsequent analysis with the CNPW observer. The model observers treated "background-known-exactly" (BKE) and "background-assumed-homogeneous" assumptions, either searching the entire organ of interest (Task A) or a reduced area that helped limit false positives (Task B). Performance was indicated by area under the LROC curve. Concordance in the localizations between observers was also analysed.

RESULTS

With the BKE assumption, both VS observers demonstrated consistent Pearson correlation with humans (Task A: 0.92 and Task B: 0.93) compared with the scanning observer (Task A: 0.77 and Task B: 0.92). The WS VS observer read 624 study test images in 2.0 min. The scanning observer required 0.7 min.

CONCLUSION

Computationally efficient VS can enhance the stability of statistical model observers with regard to uncertainties in PET tumour detection tasks.

ADVANCES IN KNOWLEDGE

VS models improve concordance with human observers.

摘要

目的

扫描模型观察者已被有效地用作一种研究工具,以预测F-18正电子发射断层扫描(PET)中的人类观察者表现。我们研究了视觉搜索(VS)观察者是否能以相当的效率提供更可靠的预测。

方法

制备了以冠状面、矢状面和横断面显示格式呈现肝脏、肺部肿瘤及背景软组织的数字体模的模拟二维图像。一项定位接收器操作特性(LROC)研究将两名人类观察者、一名通道化非白化(CNPW)扫描观察者和两个版本的基本VS观察者的肿瘤可检测性量化为器官和格式的函数。VS观察者比较了分水岭(WS)和基于梯度的搜索过程,这些过程识别出焦点摄取点以便随后与CNPW观察者进行分析。模型观察者采用“背景完全已知”(BKE)和“背景假定均匀”假设,要么搜索整个感兴趣器官(任务A),要么搜索有助于限制假阳性的缩小区域(任务B)。性能由LROC曲线下面积表示。还分析了观察者之间定位的一致性。

结果

在BKE假设下,与扫描观察者(任务A:0.77和任务B:0.92)相比,两名VS观察者与人类观察者均表现出一致的皮尔逊相关性(任务A:0.92和任务B:0.93)。WS VS观察者在2.0分钟内读取了624张研究测试图像。扫描观察者需要0.7分钟。

结论

计算效率高的VS可以增强统计模型观察者在PET肿瘤检测任务不确定性方面的稳定性。

知识进展

VS模型提高了与人类观察者的一致性。

相似文献

1
Efficient visual-search model observers for PET.
Br J Radiol. 2014 Jul;87(1039):20140017. doi: 10.1259/bjr.20140017. Epub 2014 May 16.
2
Visual-search observers for assessing tomographic x-ray image quality.
Med Phys. 2016 Mar;43(3):1563-75. doi: 10.1118/1.4942485.
3
A visual-search model observer for multislice-multiview SPECT images.
Med Phys. 2013 Sep;40(9):092505. doi: 10.1118/1.4818824.
4
Experimental comparison of lesion detectability for four fully-3D PET reconstruction schemes.
IEEE Trans Med Imaging. 2009 Apr;28(4):523-34. doi: 10.1109/TMI.2008.2006520. Epub 2008 Oct 3.
5
Towards Visual-Search Model Observers for Mass Detection in Breast Tomosynthesis.
Proc SPIE Int Soc Opt Eng. 2013 Mar 21;8668. doi: 10.1117/12.2008503.
6
Task Equivalence for Model and Human-Observer Comparisons in SPECT Localization Studies.
IEEE Trans Nucl Sci. 2016 Jun;63(3):1426-1434. doi: 10.1109/TNS.2016.2542042. Epub 2016 May 19.
7
Impact on reader performance for lesion-detection/ localization tasks of anatomical priors in SPECT reconstruction.
IEEE Trans Med Imaging. 2009 Sep;28(9):1459-67. doi: 10.1109/TMI.2009.2017741. Epub 2009 Mar 24.
9
Evaluation of Multiclass Model Observers in PET LROC Studies.
IEEE Trans Nucl Sci. 2007;54:116-123. doi: 10.1109/TNS.2006.889163.

引用本文的文献

1
2
Medical image quality metrics for foveated model observers.
J Med Imaging (Bellingham). 2021 Jul;8(4):041209. doi: 10.1117/1.JMI.8.4.041209. Epub 2021 Aug 16.
3
Foveated Model Observers for Visual Search in 3D Medical Images.
IEEE Trans Med Imaging. 2021 Mar;40(3):1021-1031. doi: 10.1109/TMI.2020.3044530. Epub 2021 Mar 2.
5
Approximating the Ideal Observer for Joint Signal Detection and Localization Tasks by use of Supervised Learning Methods.
IEEE Trans Med Imaging. 2020 Dec;39(12):3992-4000. doi: 10.1109/TMI.2020.3009022. Epub 2020 Nov 30.
6
Deep-learning-based model observer for a lung nodule detection task in computed tomography.
J Med Imaging (Bellingham). 2020 Jul;7(4):042807. doi: 10.1117/1.JMI.7.4.042807. Epub 2020 Jun 30.
7
Assessing computed tomography image quality for combined detection and estimation tasks.
J Med Imaging (Bellingham). 2017 Oct;4(4):045503. doi: 10.1117/1.JMI.4.4.045503. Epub 2017 Nov 21.
8
Foveated Model Observers to predict human performance in 3D images.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10136. doi: 10.1117/12.2252952. Epub 2017 Mar 10.
9
Lack of agreement between radiologists: implications for image-based model observers.
J Med Imaging (Bellingham). 2017 Apr;4(2):025502. doi: 10.1117/1.JMI.4.2.025502. Epub 2017 May 3.
10
Task Equivalence for Model and Human-Observer Comparisons in SPECT Localization Studies.
IEEE Trans Nucl Sci. 2016 Jun;63(3):1426-1434. doi: 10.1109/TNS.2016.2542042. Epub 2016 May 19.

本文引用的文献

1
Unified snr analysis of medical imaging systems.
Phys Med Biol. 1985 Jun;30(6):489-518. doi: 10.1088/0031-9155/30/6/001.
2
Towards Visual-Search Model Observers for Mass Detection in Breast Tomosynthesis.
Proc SPIE Int Soc Opt Eng. 2013 Mar 21;8668. doi: 10.1117/12.2008503.
3
A visual-search model observer for multislice-multiview SPECT images.
Med Phys. 2013 Sep;40(9):092505. doi: 10.1118/1.4818824.
4
Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study.
Phys Med Biol. 2013 Mar 7;58(5):1465-78. doi: 10.1088/0031-9155/58/5/1465. Epub 2013 Feb 13.
5
A random-sum Wilcoxon statistic and its application to analysis of ROC and LROC data.
J Stat Plan Inference. 2011 Jan 1;141(1):335-344. doi: 10.1016/j.jspi.2010.06.011. Epub 2010 Jun 12.
6
Quantifying the clinical relevance of a laboratory observer performance paradigm.
Br J Radiol. 2012 Sep;85(1017):1287-302. doi: 10.1259/bjr/45866310. Epub 2012 May 9.
7
Impact of time-of-flight on PET tumor detection.
J Nucl Med. 2009 Aug;50(8):1315-23. doi: 10.2967/jnumed.109.063016. Epub 2009 Jul 17.
8
Experimental comparison of lesion detectability for four fully-3D PET reconstruction schemes.
IEEE Trans Med Imaging. 2009 Apr;28(4):523-34. doi: 10.1109/TMI.2008.2006520. Epub 2008 Oct 3.
9
Evaluation of Multiclass Model Observers in PET LROC Studies.
IEEE Trans Nucl Sci. 2007;54:116-123. doi: 10.1109/TNS.2006.889163.
10
Estimation receiver operating characteristic curve and ideal observers for combined detection/estimation tasks.
J Opt Soc Am A Opt Image Sci Vis. 2007 Dec;24(12):B91-8. doi: 10.1364/josaa.24.000b91.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验