Leidy Nancy K, Malley Karen G, Steenrod Anna W, Mannino David M, Make Barry J, Bowler Russ P, Thomashow Byron M, Barr R G, Rennard Stephen I, Houfek Julia F, Yawn Barbara P, Han Meilan K, Meldrum Catherine A, Bacci Elizabeth D, Walsh John W, Martinez Fernando
Evidera, Bethesda, Maryland.
University of Kentucky, Lexington, Kentucky.
Chronic Obstr Pulm Dis. 2016;3(1):406-418. doi: 10.15326/jcopdf.3.1.2015.0144.
This study is part of a larger, multi-method project to develop a questionnaire for identifying undiagnosed cases of chronic obstructive pulmonary disease (COPD) in primary care settings, with specific interest in the detection of patients with moderate to severe airway obstruction or risk of exacerbation.
To examine 3 existing datasets for insight into key features of COPD that could be useful in the identification of undiagnosed COPD.
Random forests analyses were applied to the following databases: COPD Foundation Peak Flow Study Cohort (N=5761), Burden of Obstructive Lung Disease (BOLD) Kentucky site (N=508), and COPDGene® (N=10,214). Four scenarios were examined to find the best, smallest sets of variables that distinguished cases and controls:(1) moderate to severe COPD (forced expiratory volume in 1 second [FEV] <50% predicted) versus no COPD; (2) undiagnosed versus diagnosed COPD; (3) COPD with and without exacerbation history; and (4) clinically significant COPD (FEV<60% predicted or history of acute exacerbation) versus all others.
From 4 to 8 variables were able to differentiate cases from controls, with sensitivity ≥73 (range: 73-90) and specificity >68 (range: 68-93). Across scenarios, the best models included age, smoking status or history, symptoms (cough, wheeze, phlegm), general or breathing-related activity limitation, episodes of acute bronchitis, and/or missed work days and non-work activities due to breathing or health.
Results provide insight into variables that should be considered during the development of candidate items for a new questionnaire to identify undiagnosed cases of clinically significant COPD.
本研究是一个更大的多方法项目的一部分,该项目旨在开发一份问卷,用于在初级保健环境中识别慢性阻塞性肺疾病(COPD)的未确诊病例,特别关注中重度气道阻塞或急性加重风险患者的检测。
检查3个现有数据集,以深入了解COPD的关键特征,这些特征可能有助于识别未确诊的COPD。
将随机森林分析应用于以下数据库:COPD基金会峰值流量研究队列(N = 5761)、阻塞性肺病负担(BOLD)肯塔基站点(N = 508)和COPDGene®(N = 10214)。研究了四种情况,以找到区分病例和对照的最佳、最小变量集:(1)中重度COPD(1秒用力呼气量[FEV] <预测值的50%)与无COPD;(2)未确诊与确诊的COPD;(3)有和无急性加重史的COPD;(4)具有临床意义的COPD(FEV<预测值的60%或急性加重史)与所有其他情况。
4至8个变量能够区分病例与对照,敏感性≥73(范围:73 - 90),特异性>68(范围:68 - 93)。在所有情况中,最佳模型包括年龄、吸烟状况或吸烟史、症状(咳嗽、喘息、咳痰)、一般或与呼吸相关的活动受限、急性支气管炎发作,和/或因呼吸或健康问题导致的误工天数和非工作活动。
研究结果为开发新问卷以识别具有临床意义的COPD未确诊病例的候选项目时应考虑的变量提供了见解。