Suppr超能文献

微粒体环氧化物水解酶的基因增强可改善代谢解毒,但会损害脑血流调节。

Genetic enhancement of microsomal epoxide hydrolase improves metabolic detoxification but impairs cerebral blood flow regulation.

作者信息

Marowsky Anne, Haenel Karen, Bockamp Ernesto, Heck Rosario, Rutishauser Sibylle, Mule Nandkishor, Kindler Diana, Rudin Markus, Arand Michael

机构信息

Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.

Institute of Complex Systems (ICS-6), Research Center Julich, Wilhelm-Johnen-Straße, 52425, Julich, Germany.

出版信息

Arch Toxicol. 2016 Dec;90(12):3017-3027. doi: 10.1007/s00204-016-1666-2. Epub 2016 Feb 2.

Abstract

Microsomal epoxide hydrolase (mEH) is a detoxifying enzyme for xenobiotic compounds. Enzymatic activity of mEH can be greatly increased by a point mutation, leading to an E404D amino acid exchange in its catalytic triad. Surprisingly, this variant is not found in any vertebrate species, despite the obvious advantage of accelerated detoxification. We hypothesized that this evolutionary avoidance is due to the fact that the mEH plays a dualistic role in detoxification and control of endogenous vascular signaling molecules. To test this, we generated mEH E404D mice and assessed them for detoxification capacity and vascular dynamics. In liver microsomes from these mice, turnover of the xenobiotic compound phenanthrene-9,10-oxide was four times faster compared to WT liver microsomes, confirming accelerated detoxification. mEH E404D animals also showed faster metabolization of a specific class of endogenous eicosanoids, arachidonic acid-derived epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs). Significantly higher DHETs/EETs ratios were found in mEH E404D liver, urine, plasma, brain and cerebral endothelial cells compared to WT controls, suggesting a broad impact of the mEH mutant on endogenous EETs metabolism. Because EETs are strong vasodilators in cerebral vasculature, hemodynamics were assessed in mEH E404D and WT cerebral cortex and hippocampus using cerebral blood volume (CBV)-based functional magnetic resonance imaging (fMRI). Basal CBV levels were similar between mEH E404D and control mice in both brain areas. But vascular reactivity and vasodilation in response to the vasodilatory drug acetazolamide were reduced in mEH E404D forebrain compared to WT controls by factor 3 and 2.6, respectively. These results demonstrate a critical role for mEH E404D in vasodynamics and suggest that deregulation of endogenous signaling pathways is the undesirable gain of function associated with the E404D variant.

摘要

微粒体环氧化物水解酶(mEH)是一种对外源化合物起解毒作用的酶。mEH的酶活性可通过一个点突变而大幅提高,该突变导致其催化三联体中的氨基酸发生E404D交换。令人惊讶的是,尽管这种变体具有加速解毒的明显优势,但在任何脊椎动物物种中都未发现。我们推测这种进化上的规避是由于mEH在解毒和控制内源性血管信号分子方面发挥着双重作用。为了验证这一点,我们培育了mEH E404D小鼠,并评估了它们的解毒能力和血管动力学。在这些小鼠的肝微粒体中,与野生型(WT)肝微粒体相比,外源化合物菲-9,10-氧化物的周转速度快四倍,证实了解毒加速。mEH E404D动物还表现出特定类别的内源性类二十烷酸(花生四烯酸衍生的环氧二十碳三烯酸,即EETs)代谢为二羟基二十碳三烯酸(DHETs)的速度更快。与WT对照组相比,在mEH E404D小鼠的肝脏、尿液、血浆、大脑和脑内皮细胞中发现DHETs/EETs比值显著更高,这表明mEH突变体对内源性EETs代谢有广泛影响。由于EETs是脑血管中的强效血管舒张剂,我们使用基于脑血容量(CBV) 的功能磁共振成像(fMRI)评估了mEH E404D和WT小鼠大脑皮层及海马体中的血流动力学。在这两个脑区,mEH E404D小鼠和对照小鼠的基础CBV水平相似。但与WT对照组相比,mEH E404D小鼠前脑对血管舒张药物乙酰唑胺的血管反应性和血管舒张作用分别降低了3倍和2.6倍。这些结果证明了mEH E-404D在血管动力学中起关键作用,并表明内源性信号通路失调是与E404D变体相关的不良功能获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b91/5104800/2facce333f36/204_2016_1666_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验