Suppr超能文献

光谱CT成像能否提高孤立性肺结节良恶性的鉴别能力?

Can Spectral CT Imaging Improve the Differentiation between Malignant and Benign Solitary Pulmonary Nodules?

作者信息

Zhang Ying, Cheng Jiejun, Hua Xiaolan, Yu Mingji, Xu Chengdong, Zhang Feng, Xu Jianrong, Wu Huawei

机构信息

Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.

出版信息

PLoS One. 2016 Feb 3;11(2):e0147537. doi: 10.1371/journal.pone.0147537. eCollection 2016.

Abstract

PURPOSE

To quantitatively assess the value of dual-energy CT (DECT) in differentiating malignancy and benignity of solitary pulmonary nodules.

MATERIALS AND METHODS

Sixty-three patients with solitary pulmonary nodules detected by CT plain scan underwent contrast enhanced CT scans in arterial phase (AP) and venous phase (VP) with spectral imaging mode for tumor type differentiation. The Gemstone Spectral Imaging (GSI) viewer was used for image display and data analysis. Region of interest was placed on the relatively homogeneous area of the nodule to measure iodine concentration (IC) on iodine-based material decomposition images and CT numbers on monochromatic image sets to generate spectral HU curve. Normalized IC (NIC), slope of the spectral HU curve (λHU) and net CT number enhancement on 70keV images were calculated. The two-sample t-test was used to compare quantitative parameters. Receiver operating characteristic curves were generated to calculate sensitivity and specificity.

RESULTS

There were 63 nodules, with 37 malignant nodules (59%) and 26 benign nodules (41%). NIC, λHU and net CT number enhancement on 70keV images for malignant nodules were all greater than those of benign nodules. NIC and λHU had intermediate to high performances to differentiate malignant nodules from benign ones with the areas under curve of 0.89 and 0.86 respectively in AP, 0.96 and 0.89 respectively in VP. Using 0.30 as a threshold value for NIC in VP, one could obtain sensitivity of 93.8% and specificity of 85.7% for differentiating malignant from benign solitary pulmonary nodules. These values were statistically higher than the corresponding values of 74.2% and 53.8% obtained with the conventional CT number enhancement.

CONCLUSIONS

DECT imaging with GSI mode provides more promising value in quantitative way for distinguishing malignant nodules from benign ones than CT enhancement numbers.

摘要

目的

定量评估双能CT(DECT)在鉴别孤立性肺结节良恶性方面的价值。

材料与方法

63例经CT平扫发现孤立性肺结节的患者,采用光谱成像模式在动脉期(AP)和静脉期(VP)进行对比增强CT扫描以鉴别肿瘤类型。使用宝石光谱成像(GSI)观察器进行图像显示和数据分析。在结节相对均匀的区域放置感兴趣区,在基于碘的物质分解图像上测量碘浓度(IC),在单色图像集上测量CT值以生成光谱HU曲线。计算归一化碘浓度(NIC)、光谱HU曲线斜率(λHU)以及70keV图像上的净CT值增强。采用两样本t检验比较定量参数。绘制受试者操作特征曲线以计算敏感性和特异性。

结果

共有63个结节,其中恶性结节37个(59%),良性结节26个(41%)。恶性结节的NIC、λHU以及70keV图像上的净CT值增强均高于良性结节。NIC和λHU在鉴别恶性结节与良性结节方面具有中到高性能,在动脉期曲线下面积分别为0.89和0.86,在静脉期分别为0.96和0.89。以静脉期NIC的0.30作为阈值,鉴别孤立性肺结节良恶性的敏感性为93.8%,特异性为85.7%。这些值在统计学上高于常规CT值增强所获得的相应值74.2%和53.8%。

结论

与CT增强值相比,采用GSI模式的DECT成像在定量区分恶性结节与良性结节方面具有更有前景的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0105/4739615/7b0db28e84de/pone.0147537.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验