Suppr超能文献

时间序列转录组学揭示了AGAMOUS-LIKE22影响干旱胁迫下拟南芥的初级代谢和发育过程。

Time-Series Transcriptomics Reveals That AGAMOUS-LIKE22 Affects Primary Metabolism and Developmental Processes in Drought-Stressed Arabidopsis.

作者信息

Bechtold Ulrike, Penfold Christopher A, Jenkins Dafyd J, Legaie Roxane, Moore Jonathan D, Lawson Tracy, Matthews Jack S A, Vialet-Chabrand Silvere R M, Baxter Laura, Subramaniam Sunitha, Hickman Richard, Florance Hannah, Sambles Christine, Salmon Deborah L, Feil Regina, Bowden Laura, Hill Claire, Baker Neil R, Lunn John E, Finkenstädt Bärbel, Mead Andrew, Buchanan-Wollaston Vicky, Beynon Jim, Rand David A, Wild David L, Denby Katherine J, Ott Sascha, Smirnoff Nicholas, Mullineaux Philip M

机构信息

School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom

Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom.

出版信息

Plant Cell. 2016 Feb;28(2):345-66. doi: 10.1105/tpc.15.00910. Epub 2016 Feb 3.

Abstract

In Arabidopsis thaliana, changes in metabolism and gene expression drive increased drought tolerance and initiate diverse drought avoidance and escape responses. To address regulatory processes that link these responses, we set out to identify genes that govern early responses to drought. To do this, a high-resolution time series transcriptomics data set was produced, coupled with detailed physiological and metabolic analyses of plants subjected to a slow transition from well-watered to drought conditions. A total of 1815 drought-responsive differentially expressed genes were identified. The early changes in gene expression coincided with a drop in carbon assimilation, and only in the late stages with an increase in foliar abscisic acid content. To identify gene regulatory networks (GRNs) mediating the transition between the early and late stages of drought, we used Bayesian network modeling of differentially expressed transcription factor (TF) genes. This approach identified AGAMOUS-LIKE22 (AGL22), as key hub gene in a TF GRN. It has previously been shown that AGL22 is involved in the transition from vegetative state to flowering but here we show that AGL22 expression influences steady state photosynthetic rates and lifetime water use. This suggests that AGL22 uniquely regulates a transcriptional network during drought stress, linking changes in primary metabolism and the initiation of stress responses.

摘要

在拟南芥中,代谢和基因表达的变化推动了耐旱性的增强,并引发了多种避旱和耐旱反应。为了研究连接这些反应的调控过程,我们着手鉴定控制干旱早期反应的基因。为此,我们生成了一个高分辨率的时间序列转录组数据集,并结合了对从水分充足状态缓慢过渡到干旱状态的植物进行的详细生理和代谢分析。总共鉴定出1815个干旱响应差异表达基因。基因表达的早期变化与碳同化的下降同时发生,而仅在后期叶中脱落酸含量增加。为了鉴定介导干旱早期和后期之间转变的基因调控网络(GRN),我们对差异表达的转录因子(TF)基因进行了贝叶斯网络建模。该方法确定AGAMOUS-LIKE22(AGL22)是TF GRN中的关键枢纽基因。先前已表明AGL22参与从营养状态到开花的转变,但在这里我们表明AGL22的表达影响稳态光合速率和一生的水分利用。这表明AGL22在干旱胁迫期间独特地调节转录网络,将初级代谢的变化与胁迫反应的启动联系起来。

相似文献

3
The Arabidopsis F-box protein FOF2 regulates ABA-mediated seed germination and drought tolerance.
Plant Sci. 2020 Dec;301:110643. doi: 10.1016/j.plantsci.2020.110643. Epub 2020 Aug 28.
7
CAMTA 1 regulates drought responses in Arabidopsis thaliana.
BMC Genomics. 2013 Apr 2;14:216. doi: 10.1186/1471-2164-14-216.
9
A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA.
Plant Cell Physiol. 2014 Nov;55(11):1892-904. doi: 10.1093/pcp/pcu118. Epub 2014 Sep 3.
10

引用本文的文献

2
Unlocking gene regulatory networks for crop resilience and sustainable agriculture.
Nat Biotechnol. 2025 Jul 2. doi: 10.1038/s41587-025-02727-4.
3
Salinity survival: molecular mechanisms and adaptive strategies in plants.
Front Plant Sci. 2025 Feb 28;16:1527952. doi: 10.3389/fpls.2025.1527952. eCollection 2025.
5
Identification and characterization of MADS-box gene family in flax, L. and its role under abiotic stress.
iScience. 2024 Oct 1;27(12):111092. doi: 10.1016/j.isci.2024.111092. eCollection 2024 Dec 20.
6
The Characterization of a Novel PrMADS11 Transcription Factor from Induced Early in Bent Pine Stem.
Int J Mol Sci. 2024 Jun 30;25(13):7245. doi: 10.3390/ijms25137245.
7
Candidate regulators of drought stress in tomato revealed by comparative transcriptomic and proteomic analyses.
Front Plant Sci. 2023 Oct 23;14:1282718. doi: 10.3389/fpls.2023.1282718. eCollection 2023.
8
Photosynthetic and transcriptome responses to fluctuating light in ion transport triple mutant.
Plant Direct. 2023 Oct 25;7(10):e534. doi: 10.1002/pld3.534. eCollection 2023 Oct.
9
Response of the organellar and nuclear (post)transcriptomes of Arabidopsis to drought.
Front Plant Sci. 2023 Jul 17;14:1220928. doi: 10.3389/fpls.2023.1220928. eCollection 2023.
10
Allelic variation in transcription factor PtoWRKY68 contributes to drought tolerance in Populus.
Plant Physiol. 2023 Aug 31;193(1):736-755. doi: 10.1093/plphys/kiad315.

本文引用的文献

2
Understanding plant responses to drought - from genes to the whole plant.
Funct Plant Biol. 2003 Mar;30(3):239-264. doi: 10.1071/FP02076.
3
Die and let live: leaf senescence contributes to plant survival under drought stress.
Funct Plant Biol. 2004 May;31(3):203-216. doi: 10.1071/FP03236.
4
MetaboAnalyst 3.0--making metabolomics more meaningful.
Nucleic Acids Res. 2015 Jul 1;43(W1):W251-7. doi: 10.1093/nar/gkv380. Epub 2015 Apr 20.
6
Network modeling to understand plant immunity.
Annu Rev Phytopathol. 2014;52:93-111. doi: 10.1146/annurev-phyto-102313-050103. Epub 2014 May 4.
8
Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering.
Plant Cell Environ. 2014 Nov;37(11):2553-76. doi: 10.1111/pce.12328. Epub 2014 May 11.
9
Modelling transcriptional networks in leaf senescence.
J Exp Bot. 2014 Jul;65(14):3859-73. doi: 10.1093/jxb/eru054. Epub 2014 Mar 5.
10
A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species.
Planta. 1980 Jun;149(1):78-90. doi: 10.1007/BF00386231.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验