Yavchitz Amélie, Ravaud Philippe, Altman Douglas G, Moher David, Hrobjartsson Asbjørn, Lasserson Toby, Boutron Isabelle
Centre de Recherche Épidémiologie et Statistique Sorbonne Paris Cité (CRESS-UMR1153), Inserm/Université Paris Descartes, 1 place du Parvis Notre Dame, Paris 75004, France; Centre d'Épidémiologie Clinique, AP-HP (Assistance Publique des Hôpitaux de Paris), Hôpital Hôtel Dieu, 1 place du Parvis Notre Dame, Paris, France; French Cochrane Center, Paris Descartes University, Sorbonne Paris Cité, Faculté de Médecine, 1 place du Parvis Notre Dame, Paris 75004, France.
Centre de Recherche Épidémiologie et Statistique Sorbonne Paris Cité (CRESS-UMR1153), Inserm/Université Paris Descartes, 1 place du Parvis Notre Dame, Paris 75004, France; Centre d'Épidémiologie Clinique, AP-HP (Assistance Publique des Hôpitaux de Paris), Hôpital Hôtel Dieu, 1 place du Parvis Notre Dame, Paris, France; French Cochrane Center, Paris Descartes University, Sorbonne Paris Cité, Faculté de Médecine, 1 place du Parvis Notre Dame, Paris 75004, France; Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.
J Clin Epidemiol. 2016 Jul;75:56-65. doi: 10.1016/j.jclinepi.2016.01.020. Epub 2016 Feb 2.
We aimed to (1) identify and classify spin (i.e., a description that overstates efficacy and/or understates harm) in systematic reviews and (2) rank spin in abstracts of systematic reviews according to their severity (i.e., the likelihood of distorting readers' interpretation of the results).
First, we used a four-phase consensus process to develop a classification of different types of spin. Second, we ranked the types of spin in abstracts according to their severity using a Q-sort survey with members of the Cochrane Collaboration.
We identified 39 types of spin, 28 from the main text and 21 from the abstract; 13 were specific to the systematic review design. Spin was classified into three categories: (1) misleading reporting, (2) misleading interpretation, and (3) inappropriate extrapolation. Spin ranked as the most severe by the 122 people who participated in the survey were (1) recommendations for clinical practice not supported by findings in the conclusion, (2) misleading title, and (3) selective reporting.
This study allowed for identifying spin that is likely to distort interpretation. Our classification could help authors, editors, and reviewers avoid spin in reports of systematic reviews.
我们旨在(1)在系统评价中识别并分类夸大(即对疗效的描述夸大和/或对危害的描述轻描淡写)情况,以及(2)根据系统评价摘要中夸大情况的严重程度(即扭曲读者对结果解释的可能性)进行排序。
首先,我们采用四阶段共识过程来制定不同类型夸大情况的分类。其次,我们通过与Cochrane协作网成员进行Q分类调查,根据摘要中夸大情况的严重程度对其类型进行排序。
我们识别出39种夸大情况类型,其中28种来自正文,21种来自摘要;13种是系统评价设计所特有的。夸大情况分为三类:(1)误导性报告,(2)误导性解释,以及(3)不恰当的外推。参与调查的122人将以下情况列为最严重的夸大情况:(1)结论中的发现不支持的临床实践建议,(2)误导性标题,以及(3)选择性报告。
本研究有助于识别可能扭曲解释的夸大情况。我们的分类有助于作者、编辑和审稿人在系统评价报告中避免夸大情况。