Suppr超能文献

线粒体活性氧的药理学靶向作用可对抗慢性心力衰竭中的膈肌无力。

Pharmacological targeting of mitochondrial reactive oxygen species counteracts diaphragm weakness in chronic heart failure.

作者信息

Laitano Orlando, Ahn Bumsoo, Patel Nikhil, Coblentz Philip D, Smuder Ashley J, Yoo Jeung-Ki, Christou Demetra D, Adhihetty Peter J, Ferreira Leonardo F

机构信息

Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida.

Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida

出版信息

J Appl Physiol (1985). 2016 Apr 1;120(7):733-42. doi: 10.1152/japplphysiol.00822.2015. Epub 2016 Feb 4.

Abstract

Diaphragm muscle weakness in chronic heart failure (CHF) is caused by elevated oxidants and exacerbates breathing abnormalities, exercise intolerance, and dyspnea. However, the specific source of oxidants that cause diaphragm weakness is unknown. We examined whether mitochondrial reactive oxygen species (ROS) cause diaphragm weakness in CHF by testing the hypothesis that CHF animals treated with a mitochondria-targeted antioxidant have normal diaphragm function. Rats underwent CHF or sham surgery. Eight weeks after surgeries, we administered a mitochondrial-targeted antioxidant (MitoTEMPO; 1 mg·kg(-1)·day(-1)) or sterile saline (Vehicle). Left ventricular dysfunction (echocardiography) pre- and posttreatment and morphological abnormalities were consistent with the presence of CHF. CHF elicited a threefold (P < 0.05) increase in diaphragm mitochondrial H2O2 emission, decreased diaphragm glutathione content by 23%, and also depressed twitch and maximal tetanic force by ∼20% in Vehicle-treated animals compared with Sham (P < 0.05 for all comparisons). Diaphragm mitochondrial H2O2 emission, glutathione content, and twitch and maximal tetanic force were normal in CHF animals receiving MitoTEMPO. Neither CHF nor MitoTEMPO altered the diaphragm protein levels of antioxidant enzymes: superoxide dismutases (CuZn-SOD or MnSOD), glutathione peroxidase, and catalase. In both Vehicle and MitoTEMPO groups, CHF elicited a ∼30% increase in cytochrome c oxidase activity, whereas there were no changes in citrate synthase activity. Our data suggest that elevated mitochondrial H2O2 emission causes diaphragm weakness in CHF. Moreover, changes in protein levels of antioxidant enzymes or mitochondrial content do not seem to mediate the increase in mitochondria H2O2 emission in CHF and protective effects of MitoTEMPO.

摘要

慢性心力衰竭(CHF)时膈肌肌无力是由氧化剂水平升高所致,且会加重呼吸异常、运动不耐受和呼吸困难。然而,导致膈肌肌无力的氧化剂的具体来源尚不清楚。我们通过检验以下假设来研究线粒体活性氧(ROS)是否会导致CHF时的膈肌肌无力,即接受线粒体靶向抗氧化剂治疗的CHF动物具有正常的膈肌功能。大鼠接受CHF手术或假手术。术后8周,我们给予线粒体靶向抗氧化剂(线粒体靶向性抗氧化剂MitoTEMPO;1 mg·kg⁻¹·天⁻¹)或无菌生理盐水(载体)。治疗前后的左心室功能障碍(超声心动图)和形态学异常与CHF的存在一致。与假手术组相比,CHF使载体治疗动物的膈肌线粒体H₂O₂释放增加了三倍(P < 0.05),膈肌谷胱甘肽含量降低了23%,并使抽搐和最大强直力降低了约20%(所有比较P < 0.05)。接受MitoTEMPO的CHF动物的膈肌线粒体H₂O₂释放、谷胱甘肽含量以及抽搐和最大强直力均正常。CHF和MitoTEMPO均未改变抗氧化酶的膈肌蛋白水平:超氧化物歧化酶(铜锌超氧化物歧化酶或锰超氧化物歧化酶)、谷胱甘肽过氧化物酶和过氧化氢酶。在载体组和MitoTEMPO组中,CHF均使细胞色素c氧化酶活性增加了约30%,而柠檬酸合酶活性没有变化。我们的数据表明,线粒体H₂O₂释放增加导致CHF时的膈肌肌无力。此外,抗氧化酶蛋白水平或线粒体含量的变化似乎并未介导CHF时线粒体H₂O₂释放的增加以及MitoTEMPO的保护作用。

相似文献

1
Pharmacological targeting of mitochondrial reactive oxygen species counteracts diaphragm weakness in chronic heart failure.
J Appl Physiol (1985). 2016 Apr 1;120(7):733-42. doi: 10.1152/japplphysiol.00822.2015. Epub 2016 Feb 4.
2
Small-hairpin RNA and pharmacological targeting of neutral sphingomyelinase prevent diaphragm weakness in rats with heart failure and reduced ejection fraction.
Am J Physiol Lung Cell Mol Physiol. 2019 Apr 1;316(4):L679-L690. doi: 10.1152/ajplung.00516.2018. Epub 2019 Jan 31.
3
Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness.
Crit Care Med. 2011 Jul;39(7):1749-59. doi: 10.1097/CCM.0b013e3182190b62.
5
NAD(P)H oxidase subunit p47phox is elevated, and p47phox knockout prevents diaphragm contractile dysfunction in heart failure.
Am J Physiol Lung Cell Mol Physiol. 2015 Sep 1;309(5):L497-505. doi: 10.1152/ajplung.00176.2015. Epub 2015 Jul 24.
7
Antioxidants and mitochondrial respiration in lung, diaphragm, and locomotor muscles: effect of exercise.
Free Radic Biol Med. 1999 May;26(9-10):1292-9. doi: 10.1016/s0891-5849(98)00342-6.
9
Diaphragm single-fiber weakness and loss of myosin in congestive heart failure rats.
Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H819-28. doi: 10.1152/ajpheart.00085.2007. Epub 2007 Apr 20.
10
Superoxide dismutase/catalase mimetic EUK-134 prevents diaphragm muscle weakness in monocrotalin-induced pulmonary hypertension.
PLoS One. 2017 Feb 2;12(2):e0169146. doi: 10.1371/journal.pone.0169146. eCollection 2017.

引用本文的文献

2
Locomotor and respiratory muscle abnormalities in HFrEF and HFpEF.
Front Cardiovasc Med. 2023 Oct 27;10:1149065. doi: 10.3389/fcvm.2023.1149065. eCollection 2023.
3
Skeletal muscle atrophy, regeneration, and dysfunction in heart failure: Impact of exercise training.
J Sport Health Sci. 2023 Sep;12(5):557-567. doi: 10.1016/j.jshs.2023.04.001. Epub 2023 Apr 9.
6
Network pharmacology-based dissection of the underlying mechanisms of dyspnoea induced by zedoary turmeric oil.
Basic Clin Pharmacol Toxicol. 2022 May;130(5):606-617. doi: 10.1111/bcpt.13722. Epub 2022 Mar 29.
8
Skeletal myopathy in a rat model of postmenopausal heart failure with preserved ejection fraction.
J Appl Physiol (1985). 2022 Jan 1;132(1):106-125. doi: 10.1152/japplphysiol.00170.2021. Epub 2021 Nov 18.

本文引用的文献

1
Skeletal muscle alterations in chronic heart failure: differential effects on quadriceps and diaphragm.
J Cachexia Sarcopenia Muscle. 2015 Dec;6(4):381-90. doi: 10.1002/jcsm.12034. Epub 2015 Apr 30.
2
The Relation of Respiratory Muscle Strength to Disease Severity and Abnormal Ventilation During Exercise in Chronic Heart Failure Patients.
Res Cardiovasc Med. 2015 Sep 15;4(4):e28944. doi: 10.5812/cardiovascmed.28944. eCollection 2015 Nov.
3
NAD(P)H oxidase subunit p47phox is elevated, and p47phox knockout prevents diaphragm contractile dysfunction in heart failure.
Am J Physiol Lung Cell Mol Physiol. 2015 Sep 1;309(5):L497-505. doi: 10.1152/ajplung.00176.2015. Epub 2015 Jul 24.
4
The small-molecule fast skeletal troponin activator, CK-2127107, improves exercise tolerance in a rat model of heart failure.
J Pharmacol Exp Ther. 2015 Apr;353(1):159-68. doi: 10.1124/jpet.114.222224. Epub 2015 Feb 12.
6
Diaphragm muscle weakness in mice is early-onset post-myocardial infarction and associated with elevated protein oxidation.
J Appl Physiol (1985). 2015 Jan 1;118(1):11-9. doi: 10.1152/japplphysiol.00756.2014. Epub 2014 Oct 30.
7
Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging.
Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15250-5. doi: 10.1073/pnas.1412754111. Epub 2014 Oct 6.
8
Heart failure-induced diaphragm myopathy.
Cell Physiol Biochem. 2014;34(2):333-45. doi: 10.1159/000363003. Epub 2014 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验