Suppr超能文献

促红细胞生成素受体周转和信号传导的氧依赖性调节

Oxygen-dependent Regulation of Erythropoietin Receptor Turnover and Signaling.

作者信息

Heir Pardeep, Srikumar Tharan, Bikopoulos George, Bunda Severa, Poon Betty P, Lee Jeffrey E, Raught Brian, Ohh Michael

机构信息

From the Departments of Laboratory Medicine and Pathobiology and.

the Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada.

出版信息

J Biol Chem. 2016 Apr 1;291(14):7357-72. doi: 10.1074/jbc.M115.694562. Epub 2016 Feb 4.

Abstract

von Hippel-Lindau (VHL) disease is a rare familial cancer predisposition syndrome caused by a loss or mutation in a single gene,VHL, but it exhibits a wide phenotypic variability that can be categorized into distinct subtypes. The phenotypic variability has been largely argued to be attributable to the extent of deregulation of the α subunit of hypoxia-inducible factor α, a well established target of VHL E3 ubiquitin ligase, ECV (Elongins/Cul2/VHL). Here, we show that erythropoietin receptor (EPOR) is hydroxylated on proline 419 and 426 via prolyl hydroxylase 3. EPOR hydroxylation is required for binding to the β domain of VHL and polyubiquitylation via ECV, leading to increased EPOR turnover. In addition, several type-specific VHL disease-causing mutants, including those that have retained proper binding and regulation of hypoxia-inducible factor α, showed a severe defect in binding prolyl hydroxylated EPOR peptides. These results identify EPOR as the secondbona fidehydroxylation-dependent substrate of VHL that potentially influences oxygen homeostasis and contributes to the complex genotype-phenotype correlation in VHL disease.

摘要

冯·希佩尔-林道(VHL)病是一种罕见的家族性癌症易感综合征,由单个基因VHL的缺失或突变引起,但它表现出广泛的表型变异性,可分为不同的亚型。很大程度上认为这种表型变异性归因于缺氧诱导因子α亚基的失调程度,缺氧诱导因子α是VHL E3泛素连接酶ECV(Elongins/Cul2/VHL)的一个既定靶点。在这里,我们表明促红细胞生成素受体(EPOR)在脯氨酸419和426处通过脯氨酰羟化酶3发生羟基化。EPOR羟基化是其与VHL的β结构域结合以及通过ECV进行多聚泛素化所必需的,从而导致EPOR周转增加。此外,几种特定类型的导致VHL病的突变体,包括那些保留了对缺氧诱导因子α的适当结合和调节能力的突变体,在结合脯氨酰羟化的EPOR肽方面表现出严重缺陷。这些结果确定EPOR是VHL的第二个真正的羟基化依赖性底物,它可能影响氧稳态,并导致VHL病中复杂的基因型-表型相关性。

相似文献

1
Oxygen-dependent Regulation of Erythropoietin Receptor Turnover and Signaling.
J Biol Chem. 2016 Apr 1;291(14):7357-72. doi: 10.1074/jbc.M115.694562. Epub 2016 Feb 4.
3
Von Hippel-Lindau (VHL) small-molecule inhibitor binding increases stability and intracellular levels of VHL protein.
J Biol Chem. 2021 Aug;297(2):100910. doi: 10.1016/j.jbc.2021.100910. Epub 2021 Jun 24.
5
Parallel Regulation of von Hippel-Lindau Disease by pVHL-Mediated Degradation of B-Myb and Hypoxia-Inducible Factor α.
Mol Cell Biol. 2016 May 31;36(12):1803-17. doi: 10.1128/MCB.00067-16. Print 2016 Jun 15.
6
The HIF and other quandaries in VHL disease.
Oncogene. 2018 Jan 11;37(2):139-147. doi: 10.1038/onc.2017.338. Epub 2017 Sep 18.
7
Von Hippel-Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer.
Am J Nephrol. 2004 Jan-Feb;24(1):1-13. doi: 10.1159/000075346. Epub 2003 Dec 3.
9
The VHL/HIF oxygen-sensing pathway and its relevance to kidney disease.
Kidney Int. 2006 Apr;69(8):1302-7. doi: 10.1038/sj.ki.5000221.
10

引用本文的文献

1
P4HA2 hydroxylates SUFU to regulate the paracrine Hedgehog signaling and promote B-cell lymphoma progression.
Leukemia. 2024 Aug;38(8):1751-1763. doi: 10.1038/s41375-024-02313-8. Epub 2024 Jun 22.
2
Expression of erythropoietin receptor protein in the mouse hippocampus in response to normobaric hypoxia.
Heliyon. 2024 Jan 19;10(3):e25051. doi: 10.1016/j.heliyon.2024.e25051. eCollection 2024 Feb 15.
3
Oxygen-regulated post-translation modifications as master signalling pathway in cells.
EMBO Rep. 2023 Dec 6;24(12):e57849. doi: 10.15252/embr.202357849. Epub 2023 Oct 25.
4
PHD3 inhibits colon cancer cell metastasis through the occludin-p38 pathway.
Acta Biochim Biophys Sin (Shanghai). 2023 Nov 25;55(11):1749-1757. doi: 10.3724/abbs.2023103.
5
HypDB: A functionally annotated web-based database of the proline hydroxylation proteome.
PLoS Biol. 2022 Aug 26;20(8):e3001757. doi: 10.1371/journal.pbio.3001757. eCollection 2022 Aug.
6
PHD3 inhibits cell proliferation through hydroxylation of PAX2 at proline 9.
Acta Biochim Biophys Sin (Shanghai). 2022 May 25;54(5):708-715. doi: 10.3724/abbs.2022043.
7
Von Hippel-Lindau tumor suppressor pathways & corresponding therapeutics in kidney cancer.
J Genet Genomics. 2021 Jul 20;48(7):552-559. doi: 10.1016/j.jgg.2021.05.016. Epub 2021 Jul 9.
8
Hypoxia and Oxygen-Sensing Signaling in Gene Regulation and Cancer Progression.
Int J Mol Sci. 2020 Oct 31;21(21):8162. doi: 10.3390/ijms21218162.
9
Erythropoietin regulation of red blood cell production: from bench to bedside and back.
F1000Res. 2020 Sep 18;9. doi: 10.12688/f1000research.26648.1. eCollection 2020.
10
The von Hippel-Lindau Tumor Suppressor Gene: Implications and Therapeutic Opportunities.
Cancer J. 2020 Sep/Oct;26(5):390-398. doi: 10.1097/PPO.0000000000000480.

本文引用的文献

2
Genome-scale CRISPR-Cas9 knockout screening in human cells.
Science. 2014 Jan 3;343(6166):84-87. doi: 10.1126/science.1247005. Epub 2013 Dec 12.
3
A knock-in mouse model of human PHD2 gene-associated erythrocytosis establishes a haploinsufficiency mechanism.
J Biol Chem. 2013 Nov 22;288(47):33571-33584. doi: 10.1074/jbc.M113.482364. Epub 2013 Oct 11.
4
Von Hippel-Lindau: how a rare disease illuminates cancer biology.
Semin Cancer Biol. 2013 Feb;23(1):26-37. doi: 10.1016/j.semcancer.2012.05.005. Epub 2012 May 30.
5
Regulation of cellular levels of Sprouty2 protein by prolyl hydroxylase domain and von Hippel-Lindau proteins.
J Biol Chem. 2011 Dec 9;286(49):42027-42036. doi: 10.1074/jbc.M111.303222. Epub 2011 Oct 17.
6
Oxygen sensing, homeostasis, and disease.
N Engl J Med. 2011 Aug 11;365(6):537-47. doi: 10.1056/NEJMra1011165.
9
The HIF pathway and erythrocytosis.
Annu Rev Pathol. 2011;6:165-92. doi: 10.1146/annurev-pathol-011110-130321.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验