DiChiara Andrew S, Taylor Rebecca J, Wong Madeline Y, Doan Ngoc-Duc, Rosario Amanda M Del, Shoulders Matthew D
Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Koch Institute for Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.
ACS Chem Biol. 2016 May 20;11(5):1408-21. doi: 10.1021/acschembio.5b01083. Epub 2016 Mar 9.
Collagen-I is the most abundant protein in the human body, yet our understanding of how the endoplasmic reticulum regulates collagen-I proteostasis (folding, quality control, and secretion) remains immature. Of particular importance, interactomic studies to map the collagen-I proteostasis network have never been performed. Such studies would provide insight into mechanisms of collagen-I folding and misfolding in cells, an area that is particularly important owing to the prominence of the collagen misfolding-related diseases. Here, we overcome key roadblocks to progress in this area by generating stable fibrosarcoma cells that inducibly express properly folded and modified collagen-I strands tagged with distinctive antibody epitopes. Selective immunoprecipitation of collagen-I from these cells integrated with quantitative mass spectrometry-based proteomics permits the first mapping of the collagen-I proteostasis network. Biochemical validation of the resulting map leads to the assignment of numerous new players in collagen-I proteostasis, and the unanticipated discovery of apparent aspartyl-hydroxylation as a new post-translational modification in the N-propeptide of collagen-I. Furthermore, quantitative analyses reveal that Erp29, an abundant endoplasmic reticulum proteostasis machinery component with few known functions, plays a key role in collagen-I retention under ascorbate-deficient conditions. In summary, the work here provides fresh insights into the molecular mechanisms of collagen-I proteostasis, yielding a detailed roadmap for future investigations. Straightforward adaptations of the cellular platform developed will also enable hypothesis-driven, comparative research on the likely distinctive proteostasis mechanisms engaged by normal and disease-causing, misfolding collagen-I variants, potentially motivating new therapeutic strategies for currently incurable collagenopathies.
I型胶原蛋白是人体中含量最丰富的蛋白质,但我们对内质网如何调节I型胶原蛋白蛋白质稳态(折叠、质量控制和分泌)的理解仍不成熟。特别重要的是,尚未进行过绘制I型胶原蛋白蛋白质稳态网络的相互作用组学研究。此类研究将深入了解细胞中I型胶原蛋白折叠和错误折叠的机制,鉴于与胶原蛋白错误折叠相关疾病的突出性,这一领域尤为重要。在这里,我们通过生成稳定的纤维肉瘤细胞克服了该领域进展的关键障碍,这些细胞可诱导表达带有独特抗体表位标签的正确折叠和修饰的I型胶原链条。从这些细胞中选择性免疫沉淀I型胶原蛋白,并结合基于定量质谱的蛋白质组学,首次绘制了I型胶原蛋白蛋白质稳态网络。对所得图谱的生化验证确定了I型胶原蛋白蛋白质稳态中的众多新参与者,并意外发现明显的天冬氨酰羟基化是I型胶原蛋白N端前肽中的一种新的翻译后修饰。此外,定量分析表明,Erp29是内质网蛋白质稳态机制中一种丰富但功能鲜为人知的成分,在抗坏血酸缺乏条件下,它在I型胶原蛋白的保留中起关键作用。总之,本文的工作为I型胶原蛋白蛋白质稳态的分子机制提供了新的见解,为未来的研究提供了详细的路线图。对所开发的细胞平台进行直接改造,还将能够对正常和致病的错误折叠I型胶原蛋白变体可能独特的蛋白质稳态机制进行假设驱动的比较研究,这可能为目前无法治愈的胶原病激发新的治疗策略。