Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
J Biol Chem. 2020 Jul 17;295(29):9959-9973. doi: 10.1074/jbc.RA120.014071. Epub 2020 Jun 1.
Intracellular collagen assembly begins with the oxidative folding of ∼30-kDa C-terminal propeptide (C-Pro) domains. Folded C-Pro domains then template the formation of triple helices between appropriate partner strands. Numerous C-Pro missense variants that disrupt or delay triple-helix formation are known to cause disease, but our understanding of the specific proteostasis defects introduced by these variants remains immature. Moreover, it is unclear whether or not recognition and quality control of misfolded C-Pro domains is mediated by recognizing stalled assembly of triple-helical domains or by direct engagement of the C-Pro itself. Here, we integrate biochemical and cellular approaches to illuminate the proteostasis defects associated with osteogenesis imperfecta-causing mutations within the collagen-α2(I) C-Pro domain. We first show that "C-Pro-only" constructs recapitulate key aspects of the behavior of full-length Colα2(I) constructs. Of the variants studied, perhaps the most severe assembly defects are associated with C1163R C-Proα2(I), which is incapable of forming stable trimers and is retained within cells. We find that the presence or absence of an unassembled triple-helical domain is not the key feature driving cellular retention secretion. Rather, the proteostasis network directly engages the misfolded C-Pro domain itself to prevent secretion and initiate clearance. Using MS-based proteomics, we elucidate how the endoplasmic reticulum (ER) proteostasis network differentially engages misfolded C1163R C-Proα2(I) and targets it for ER-associated degradation. These results provide insights into collagen folding and quality control with the potential to inform the design of proteostasis network-targeted strategies for managing collagenopathies.
细胞内胶原蛋白组装始于约 30kDa C 端前肽(C-Pro)结构域的氧化折叠。折叠的 C-Pro 结构域随后模板形成适当配对链之间的三螺旋。许多破坏或延迟三螺旋形成的 C-Pro 错义变体已知会导致疾病,但我们对这些变体引起的特定蛋白质稳态缺陷的理解仍不成熟。此外,尚不清楚识别和质量控制错误折叠的 C-Pro 结构域是否通过识别三螺旋结构域的停滞组装或通过 C-Pro 本身的直接参与来介导。在这里,我们整合生化和细胞方法来阐明与胶原蛋白-α2(I) C-Pro 结构域中骨不全症引起的突变相关的蛋白质稳态缺陷。我们首先表明,“仅 C-Pro”构建体再现了全长 Colα2(I)构建体行为的关键方面。在所研究的变体中,与 C1163R C-Proα2(I)相关的组装缺陷可能最为严重,该变体无法形成稳定的三聚体并且保留在细胞内。我们发现,未组装的三螺旋结构域的存在与否不是驱动细胞保留和分泌的关键特征。相反,蛋白质稳态网络直接参与错误折叠的 C-Pro 结构域本身,以防止分泌并启动清除。使用基于 MS 的蛋白质组学,我们阐明了内质网(ER)蛋白质稳态网络如何差异化地参与错误折叠的 C1163R C-Proα2(I),并将其靶向 ER 相关降解。这些结果提供了对胶原蛋白折叠和质量控制的深入了解,有可能为管理胶原蛋白病的蛋白质稳态网络靶向策略的设计提供信息。