Suppr超能文献

利用家庭医疗电子健康记录用于心力衰竭远程家庭护理患者:一种检测与再住院关联的决策树方法

Utilizing Home Healthcare Electronic Health Records for Telehomecare Patients With Heart Failure: A Decision Tree Approach to Detect Associations With Rehospitalizations.

作者信息

Kang Youjeong, McHugh Matthew D, Chittams Jesse, Bowles Kathryn H

机构信息

Author Affiliations: University of Pennsylvania School of Nursing, Philadelphia.

出版信息

Comput Inform Nurs. 2016 Apr;34(4):175-82. doi: 10.1097/CIN.0000000000000223.

Abstract

Heart failure is a complex condition with a significant impact on patients' lives. A few studies have identified risk factors associated with rehospitalization among telehomecare patients with heart failure using logistic regression or survival analysis models. To date, there are no published studies that have used data mining techniques to detect associations with rehospitalizations among telehomecare patients with heart failure. This study is a secondary analysis of the home healthcare electronic medical record called the Outcome and Assessment Information Set-C for 552 telemonitored heart failure patients. Bivariate analyses using SAS and a decision tree technique using Waikato Environment for Knowledge Analysis were used. From the decision tree technique, the presence of skin issues was identified as the top predictor of rehospitalization that could be identified during the start of care assessment, followed by patient's living situation, patient's overall health status, severe pain experiences, frequency of activity-limiting pain, and total number of anticipated therapy visits combined. Examining risk factors for rehospitalization from the Outcome and Assessment Information Set-C database using a decision tree approach among a cohort of telehomecare patients provided a broad understanding of the characteristics of patients who are appropriate for the use of telehomecare or who need additional supports.

摘要

心力衰竭是一种复杂的病症,对患者的生活有重大影响。一些研究已经使用逻辑回归或生存分析模型,确定了心力衰竭远程家庭护理患者再次住院的相关风险因素。迄今为止,尚无已发表的研究使用数据挖掘技术来检测心力衰竭远程家庭护理患者再次住院的关联因素。本研究是对名为结局与评估信息集-C的家庭医疗电子病历进行的二次分析,该病历涉及552名接受远程监测的心力衰竭患者。使用SAS进行了双变量分析,并使用怀卡托知识分析环境的决策树技术。从决策树技术中可以看出,皮肤问题的存在被确定为在护理评估开始时能够识别的再次住院的首要预测因素,其次是患者的生活状况、患者的整体健康状况、严重疼痛经历、活动受限疼痛的频率以及预期治疗就诊的总数。在一组远程家庭护理患者中,使用决策树方法从结局与评估信息集-C数据库中检查再次住院的风险因素,有助于广泛了解适合使用远程家庭护理或需要额外支持的患者的特征。

相似文献

2
Risk Factors for All-Cause Rehospitalization Among Medicare Recipients with Heart Failure Receiving Telehomecare.
Telemed J E Health. 2017 Apr;23(4):305-312. doi: 10.1089/tmj.2016.0048. Epub 2016 Sep 30.
4
Applying research evidence to optimize telehomecare.
J Cardiovasc Nurs. 2007 Jan-Feb;22(1):5-15. doi: 10.1097/00005082-200701000-00002.
5
Home telehealth and hospital readmissions: a retrospective OASIS-C data analysis.
Home Healthc Now. 2015 Jan;33(1):20-6. doi: 10.1097/NHH.0000000000000167.
8
A multi-level qualitative analysis of Telehomecare in Ontario: challenges and opportunities.
BMC Health Serv Res. 2015 Dec 9;15:544. doi: 10.1186/s12913-015-1196-2.
10
Rehospitalization in a national population of home health care patients with heart failure.
Health Serv Res. 2012 Dec;47(6):2316-38. doi: 10.1111/j.1475-6773.2012.01416.x. Epub 2012 Apr 23.

引用本文的文献

1
Artificial Intelligence in the Intensive Care Unit: Current Evidence on an Inevitable Future Tool.
Cureus. 2024 May 7;16(5):e59797. doi: 10.7759/cureus.59797. eCollection 2024 May.
2
Prediction model of quality of life using the decision tree model in older adult single-person households: a secondary data analysis.
Front Public Health. 2023 Aug 31;11:1224018. doi: 10.3389/fpubh.2023.1224018. eCollection 2023.
4
Identifying unmet needs of older adults transitioning from home health care to independence at home: A qualitative study.
Geriatr Nurs. 2023 May-Jun;51:293-302. doi: 10.1016/j.gerinurse.2023.03.015. Epub 2023 Apr 7.
5
Machine learning applied to electronic health record data in home healthcare: A scoping review.
Int J Med Inform. 2023 Feb;170:104978. doi: 10.1016/j.ijmedinf.2022.104978. Epub 2022 Dec 30.
6
Modern Approaches for the Treatment of Heart Failure: Recent Advances and Future Perspectives.
Pharmaceutics. 2022 Sep 17;14(9):1964. doi: 10.3390/pharmaceutics14091964.
7
Artificial Intelligence in Cardiovascular Medicine: Current Insights and Future Prospects.
Vasc Health Risk Manag. 2022 Jul 12;18:517-528. doi: 10.2147/VHRM.S279337. eCollection 2022.
8
The Utility of Nursing Notes Among Medicare Patients With Heart Failure to Predict 30-Day Rehospitalization: A Pilot Study.
J Cardiovasc Nurs. 2022;37(6):E181-E186. doi: 10.1097/JCN.0000000000000871. Epub 2021 Dec 22.
9
Application of machine learning in predicting hospital readmissions: a scoping review of the literature.
BMC Med Res Methodol. 2021 May 6;21(1):96. doi: 10.1186/s12874-021-01284-z.
10
Mobility and Self-Care are Associated With Discharge to Community After Home Health for People With Dementia.
J Am Med Dir Assoc. 2021 Jul;22(7):1493-1499.e1. doi: 10.1016/j.jamda.2020.12.014. Epub 2021 Jan 19.

本文引用的文献

1
Risk factors for hospitalization in a national sample of medicare home health care patients.
J Appl Gerontol. 2014 Jun;33(4):474-93. doi: 10.1177/0733464812454007. Epub 2012 Aug 1.
2
Exploring the value of clinical data standards to predict hospitalization of home care patients.
Appl Clin Inform. 2012 Nov 21;3(4):419-36. doi: 10.4338/ACI-2012-05-RA-0016. Print 2012.
3
Home health care with telemonitoring improves health status for older adults with heart failure.
Home Health Care Serv Q. 2013;32(1):57-74. doi: 10.1080/01621424.2012.755144.
4
Rehospitalization for heart failure: problems and perspectives.
J Am Coll Cardiol. 2013 Jan 29;61(4):391-403. doi: 10.1016/j.jacc.2012.09.038. Epub 2012 Dec 5.
6
Rehospitalization in a national population of home health care patients with heart failure.
Health Serv Res. 2012 Dec;47(6):2316-38. doi: 10.1111/j.1475-6773.2012.01416.x. Epub 2012 Apr 23.
7
Home monitoring for heart failure management.
J Am Coll Cardiol. 2012 Jan 10;59(2):97-104. doi: 10.1016/j.jacc.2011.09.044.
8
Risk prediction models for hospital readmission: a systematic review.
JAMA. 2011 Oct 19;306(15):1688-98. doi: 10.1001/jama.2011.1515.
9
Telehealth monitoring: a smart investment for home care patients with heart failure?
Home Healthc Nurse. 2011 Jun;29(6):368-74. doi: 10.1097/NHH.0b013e31821b7186.
10
Predicting improvement in urinary and bowel incontinence for home health patients using electronic health record data.
J Wound Ostomy Continence Nurs. 2011 Jan-Feb;38(1):77-87. doi: 10.1097/won.0b013e318202e4a6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验