Suppr超能文献

探索临床数据标准在预测家庭护理患者住院方面的价值。

Exploring the value of clinical data standards to predict hospitalization of home care patients.

出版信息

Appl Clin Inform. 2012 Nov 21;3(4):419-36. doi: 10.4338/ACI-2012-05-RA-0016. Print 2012.

Abstract

BACKGROUND

There is a critical need to reduce hospitalizations for Medicare patients and electronic health record (EHR) home care data provide new opportunities to evaluate risk of hospitalization for patients.

OBJECTIVES

The objectives of this study were to 1) develop a measure to predict risk of hospitalization among home care patients, the Hospitalization Risk Score (HRS), and 2) compare it with an existing severity of illness measure, the Charlson Index of Comorbidity (CIC).

METHODS

A convenience sample of clinical data from 14 home care agencies' EHRs, representing 1,643 home care patient episodes was used for the study. The development of the HRS was based on review of the literature, and expert panel evaluation to construct the HRS. Descriptive statistics and generalized linear models were used for comparative analysis; areas under curve (AUC) values were compared for receiver operating curves (ROC), and cut points predicting hospitalization were evaluated.

RESULTS

The HRS for this sample ranged from 0 to 5.6, with a median of 1.25. The CIC for this sample ranged from 0 to 9 and with a median of 0. Nearly three fourths of the sample was hospitalized at an HRS of 2, and a CIC of 1. AUC values for ROC were 0.63 for HRS and 0.59 for the CIC. The ROC curves were significantly different (t = -7.59, p <0.003).

CONCLUSIONS

This preliminary study demonstrates the potential value of the HRS using Omaha System EHR data. There was a statistically significant difference for predicting hospitalization of home care patients with the HRS versus the CIC; however the AUC values for both were low. Continued research is needed to further refine the HRS, determine whether it is more sensitive for particular subgroups of patients, and combine it with additional risk factors in understanding rehospitalization.

摘要

背景

减少医疗保险患者住院治疗的需求非常迫切,电子健康记录 (EHR) 家庭护理数据为评估患者住院风险提供了新的机会。

目的

本研究旨在 1)开发一种预测家庭护理患者住院风险的指标,即住院风险评分 (HRS),2)并将其与现有的疾病严重程度指标——合并症 Charlson 指数 (CIC) 进行比较。

方法

本研究使用了来自 14 家家庭护理机构的 EHR 的临床数据,代表了 1643 名家庭护理患者的病例。HRS 的开发是基于文献回顾和专家小组评估,以构建 HRS。描述性统计和广义线性模型用于比较分析;接收者操作曲线 (ROC) 的曲线下面积 (AUC) 值进行比较,并评估预测住院的切点。

结果

该样本的 HRS 范围为 0 至 5.6,中位数为 1.25。该样本的 CIC 范围为 0 至 9,中位数为 0。近四分之三的样本在 HRS 为 2 和 CIC 为 1 时住院。ROC 的 AUC 值分别为 0.63 和 0.59。ROC 曲线有显著差异 (t = -7.59,p <0.003)。

结论

本初步研究使用奥马哈系统 EHR 数据展示了 HRS 的潜在价值。使用 HRS 预测家庭护理患者的住院情况与使用 CIC 相比有统计学意义上的显著差异;然而,两者的 AUC 值都较低。需要进一步研究来进一步完善 HRS,确定其对特定患者亚组的敏感性,以及结合其他风险因素来理解再住院率。

相似文献

1
Exploring the value of clinical data standards to predict hospitalization of home care patients.
Appl Clin Inform. 2012 Nov 21;3(4):419-36. doi: 10.4338/ACI-2012-05-RA-0016. Print 2012.
2
Multiyear Rehospitalization Rates and Hospital Outcomes in an Integrated Health Care System.
JAMA Netw Open. 2019 Dec 2;2(12):e1916769. doi: 10.1001/jamanetworkopen.2019.16769.
4
Predicting hospitalizations from electronic health record data.
Am J Manag Care. 2020 Jan 1;26(1):e7-e13. doi: 10.37765/ajmc.2020.42147.

引用本文的文献

1
Detecting Language Associated With Home Healthcare Patient's Risk for Hospitalization and Emergency Department Visit.
Nurs Res. 2022;71(4):285-294. doi: 10.1097/NNR.0000000000000586. Epub 2022 Feb 16.
2
Activities of Daily Living of Home Healthcare Patients.
Home Healthc Now. 2019 May/Jun;37(3):165-173. doi: 10.1097/NHH.0000000000000736.
3
Urinary tract infection-related hospitalization among older adults receiving home health care.
Am J Infect Control. 2019 Jul;47(7):786-792.e1. doi: 10.1016/j.ajic.2018.12.012. Epub 2019 Feb 14.
4
Transitions From Skilled Nursing Facility to Home: The Relationship of Early Outpatient Care to Hospital Readmission.
J Am Med Dir Assoc. 2017 Oct 1;18(10):853-859. doi: 10.1016/j.jamda.2017.05.007. Epub 2017 Jun 21.
5
Risk Factors for All-Cause Rehospitalization Among Medicare Recipients with Heart Failure Receiving Telehomecare.
Telemed J E Health. 2017 Apr;23(4):305-312. doi: 10.1089/tmj.2016.0048. Epub 2016 Sep 30.
6
Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review.
J Am Med Inform Assoc. 2017 Jan;24(1):198-208. doi: 10.1093/jamia/ocw042. Epub 2016 May 17.

本文引用的文献

1
Evidence-based Standardized Care Plans for Use Internationally to Improve Home Care Practice and Population Health.
Appl Clin Inform. 2011 Sep 21;2(3):373-83. doi: 10.4338/ACI-2011-03-RA-0023. Print 2011.
2
Developing a personal health record for community-dwelling older adults and clinicians: technology and content.
J Gerontol Nurs. 2012 Jul;38(7):21-5. doi: 10.3928/00989134-20120605-03. Epub 2012 Jun 15.
3
Standard practices for computerized clinical decision support in community hospitals: a national survey.
J Am Med Inform Assoc. 2012 Nov-Dec;19(6):980-7. doi: 10.1136/amiajnl-2011-000705. Epub 2012 Jun 15.
4
Medication regimens in older home care patients.
J Gerontol Nurs. 2011 Dec;37(12):45-55. doi: 10.3928/00989134-20111103-02. Epub 2011 Nov 16.
5
Public health nurses tailor interventions for families at risk.
Public Health Nurs. 2011 Mar-Apr;28(2):119-28. doi: 10.1111/j.1525-1446.2010.00911.x. Epub 2011 Jan 20.
7
Linking home care interventions and hospitalization outcomes for frail and non-frail elderly patients.
Res Nurs Health. 2011 Apr;34(2):160-8. doi: 10.1002/nur.20426. Epub 2011 Feb 25.
8
Predicting improvement in urinary and bowel incontinence for home health patients using electronic health record data.
J Wound Ostomy Continence Nurs. 2011 Jan-Feb;38(1):77-87. doi: 10.1097/won.0b013e318202e4a6.
10
Recurrent readmissions in medical patients: a prospective study.
J Hosp Med. 2011 Feb;6(2):61-7. doi: 10.1002/jhm.811. Epub 2010 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验