Suppr超能文献

高等植物中氰苷的生物合成。对羟基苯乙醛肟的(E)-和(Z)-异构体作为高粱(Sorghum bicolor (L.) Moench)中蜀黍苷生物合成的中间体。

The biosynthesis of cyanogenic glucosides in higher plants. The (E)- and (Z)-isomers of p-hydroxyphenylacetaldehyde oxime as intermediates in the biosynthesis of dhurrin in Sorghum bicolor (L.) Moench.

作者信息

Halkier B A, Olsen C E, Møller B L

机构信息

Department of Plant Physiology, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark.

出版信息

J Biol Chem. 1989 Nov 25;264(33):19487-94.

PMID:2684955
Abstract

The biosynthesis of the tyrosine-derived cyanogenic glucoside dhurrin has been studied with a microsomal preparation obtained from etiolated seedlings of sorghum. The biosynthetic pathway involves tyrosine, N-hydroxytyrosine, and p-hydroxyphenylacetaldehyde oxime as early intermediates (Møller, B. L. and Conn, E. E. (1980) J. Biol. Chem. 254, 8575-8583). The use of deuterium-labeled tyrosine and mass spectrometric analyses demonstrate that the alpha-hydrogen atom of tyrosine is retained in the conversion of tyrosine to p-hydroxyphenylacetaldehyde oxime. This excludes p-hydroxyphenylpyruvic acid oxime as intermediate in the pathway. A high pressure liquid chromatography method was developed to separate the (E)- and (Z)-isomers of p-hydroxyphenylacetaldehyde oxime. The microsomal enzyme system was found to produce initially the (E)-isomer of p-hydroxyphenylacetaldehyde oxime. An isomerase then converts the (E)-isomer to the (Z)-isomer, which is the isomer preferentially utilized by the microsomal enzyme system in the subsequent biosynthetic reactions. The (E)-isomer produced in situ is more efficiently converted to the (Z)-isomer than exogenously added (E)-isomer and may thus be metabolically channeled.

摘要

利用从高粱黄化幼苗中获得的微粒体制剂,对酪氨酸衍生的生氰糖苷蜀黍氰苷的生物合成进行了研究。生物合成途径涉及酪氨酸、N-羟基酪氨酸和对羟基苯乙醛肟作为早期中间体(Møller, B. L. 和Conn, E. E. (1980) J. Biol. Chem. 254, 8575 - 8583)。使用氘标记的酪氨酸和质谱分析表明,酪氨酸的α-氢原子在酪氨酸转化为对羟基苯乙醛肟的过程中得以保留。这排除了对羟基苯丙酮酸肟作为该途径中的中间体。开发了一种高压液相色谱法来分离对羟基苯乙醛肟的(E)-和(Z)-异构体。发现微粒体酶系统最初产生对羟基苯乙醛肟的(E)-异构体。然后一种异构酶将(E)-异构体转化为(Z)-异构体,(Z)-异构体是微粒体酶系统在随后的生物合成反应中优先利用的异构体。原位产生的(E)-异构体比外源添加的(E)-异构体更有效地转化为(Z)-异构体,因此可能存在代谢通道化现象。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验