Halkier B A, Olsen C E, Møller B L
Department of Plant Physiology, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark.
J Biol Chem. 1989 Nov 25;264(33):19487-94.
The biosynthesis of the tyrosine-derived cyanogenic glucoside dhurrin has been studied with a microsomal preparation obtained from etiolated seedlings of sorghum. The biosynthetic pathway involves tyrosine, N-hydroxytyrosine, and p-hydroxyphenylacetaldehyde oxime as early intermediates (Møller, B. L. and Conn, E. E. (1980) J. Biol. Chem. 254, 8575-8583). The use of deuterium-labeled tyrosine and mass spectrometric analyses demonstrate that the alpha-hydrogen atom of tyrosine is retained in the conversion of tyrosine to p-hydroxyphenylacetaldehyde oxime. This excludes p-hydroxyphenylpyruvic acid oxime as intermediate in the pathway. A high pressure liquid chromatography method was developed to separate the (E)- and (Z)-isomers of p-hydroxyphenylacetaldehyde oxime. The microsomal enzyme system was found to produce initially the (E)-isomer of p-hydroxyphenylacetaldehyde oxime. An isomerase then converts the (E)-isomer to the (Z)-isomer, which is the isomer preferentially utilized by the microsomal enzyme system in the subsequent biosynthetic reactions. The (E)-isomer produced in situ is more efficiently converted to the (Z)-isomer than exogenously added (E)-isomer and may thus be metabolically channeled.
利用从高粱黄化幼苗中获得的微粒体制剂,对酪氨酸衍生的生氰糖苷蜀黍氰苷的生物合成进行了研究。生物合成途径涉及酪氨酸、N-羟基酪氨酸和对羟基苯乙醛肟作为早期中间体(Møller, B. L. 和Conn, E. E. (1980) J. Biol. Chem. 254, 8575 - 8583)。使用氘标记的酪氨酸和质谱分析表明,酪氨酸的α-氢原子在酪氨酸转化为对羟基苯乙醛肟的过程中得以保留。这排除了对羟基苯丙酮酸肟作为该途径中的中间体。开发了一种高压液相色谱法来分离对羟基苯乙醛肟的(E)-和(Z)-异构体。发现微粒体酶系统最初产生对羟基苯乙醛肟的(E)-异构体。然后一种异构酶将(E)-异构体转化为(Z)-异构体,(Z)-异构体是微粒体酶系统在随后的生物合成反应中优先利用的异构体。原位产生的(E)-异构体比外源添加的(E)-异构体更有效地转化为(Z)-异构体,因此可能存在代谢通道化现象。