Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia.
Smart Water Research Centre, Griffith University, Queensland, Australia.
Risk Anal. 2016 Oct;36(10):1948-1958. doi: 10.1111/risa.12561. Epub 2016 Feb 5.
Quantitative microbial risk assessment (QMRA) is widely accepted for characterizing the microbial risks associated with food, water, and wastewater. Single-hit dose-response models are the most commonly used dose-response models in QMRA. Denoting PI(d) as the probability of infection at a given mean dose d, a three-parameter generalized QMRA beta-Poisson dose-response model, PI(d|α,β,r*), is proposed in which the minimum number of organisms required for causing infection, K , is not fixed, but a random variable following a geometric distribution with parameter 0<r*≤1. The single-hit beta-Poisson model, PI(d|α,β), is a special case of the generalized model with K = 1 (which implies r*=1). The generalized beta-Poisson model is based on a conceptual model with greater detail in the dose-response mechanism. Since a maximum likelihood solution is not easily available, a likelihood-free approximate Bayesian computation (ABC) algorithm is employed for parameter estimation. By fitting the generalized model to four experimental data sets from the literature, this study reveals that the posterior median r* estimates produced fall short of meeting the required condition of r* = 1 for single-hit assumption. However, three out of four data sets fitted by the generalized models could not achieve an improvement in goodness of fit. These combined results imply that, at least in some cases, a single-hit assumption for characterizing the dose-response process may not be appropriate, but that the more complex models may be difficult to support especially if the sample size is small. The three-parameter generalized model provides a possibility to investigate the mechanism of a dose-response process in greater detail than is possible under a single-hit model.
定量微生物风险评估(QMRA)广泛用于描述与食品、水和废水相关的微生物风险。单击剂量反应模型是 QMRA 中最常用的剂量反应模型。表示 PI(d) 为在给定平均剂量 d 下感染的概率,提出了一种三参数广义 QMRA 贝塔-泊松剂量反应模型 PI(d|α,β,r*),其中引起感染所需的最小生物体数 K 不是固定的,而是遵循参数 0<r*≤1 的几何分布的随机变量。单击贝塔-泊松模型 PI(d|α,β)是广义模型的特殊情况,其中 K=1(这意味着 r*=1)。广义贝塔-泊松模型基于剂量反应机制更详细的概念模型。由于不易获得最大似然解,因此采用无似然近似贝叶斯计算(ABC)算法进行参数估计。通过将广义模型拟合到文献中的四个实验数据集,本研究表明,产生的后验中位数 r估计值不符合单击假设所需的 r=1 的条件。然而,四个数据集中有三个拟合广义模型并不能提高拟合优度。这些综合结果表明,在某些情况下,用于描述剂量反应过程的单击假设可能不合适,但复杂模型可能难以支持,特别是在样本量较小的情况下。三参数广义模型提供了一种可能性,可以比单击模型更详细地研究剂量反应过程的机制。