Deslauriers Annie, Huang Jian-Guo, Balducci Lorena, Beaulieu Marilène, Rossi Sergio
Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada G7H2B1 (A.D., L.B., M.B., S.R.); andKey Laboratory of Vegetation Restoration and Management of Degraded Ecosystems (J.-G.H., S.R.) and Provincial Key Laboratory of Applied Botany (J.-G.H.), South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada G7H2B1 (A.D., L.B., M.B., S.R.); andKey Laboratory of Vegetation Restoration and Management of Degraded Ecosystems (J.-G.H., S.R.) and Provincial Key Laboratory of Applied Botany (J.-G.H.), South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
Plant Physiol. 2016 Apr;170(4):2072-84. doi: 10.1104/pp.15.01525. Epub 2016 Feb 5.
Nonstructural carbohydrates (NSCs) play a crucial role in xylem formation and represent, with water, the main constraint to plant growth. We assessed the relationships between xylogenesis and NSCs in order to (1) verify the variance explained by NSCs and (2) determine the influence of intrinsic (tissue supplying carbon) and extrinsic (water availability and temperature) factors. During 2 years, wood formation was monitored in saplings of black spruce (Picea mariana) subjected to a dry period of about 1 month in June and exposed to different temperature treatments in a greenhouse. In parallel, NSC concentrations were determined by extracting the sugar compounds from two tissues (cambium and inner xylem), both potentially supplying carbon for wood formation. A mixed-effect model was used to assess and quantify the potential relationships. Total xylem cells, illustrating meristematic activity, were modeled as a function of water, sucrose, and d-pinitol (conditional r(2) of 0.79). Water availability was ranked as the most important factor explaining total xylem cell production, while the contribution of carbon was lower. Cambium stopped dividing under water deficit, probably to limit the number of cells remaining in differentiation without an adequate amount of water. By contrast, carbon factors were ranked as most important in explaining the variation in living cells (conditional r(2) of 0.49), highlighting the functional needs during xylem development, followed by the tissue supplying the NSCs (cambium) and water availability. This study precisely demonstrates the role of carbon and water in structural growth expressed as meristematic activity and tissue formation.
非结构性碳水化合物(NSCs)在木质部形成过程中起着关键作用,并且与水一起,是植物生长的主要限制因素。我们评估了木质部形成与NSCs之间的关系,以便(1)验证NSCs所解释的变异,以及(2)确定内在因素(提供碳的组织)和外在因素(水分可利用性和温度)的影响。在两年时间里,对黑云杉(Picea mariana)幼树的木材形成进行了监测,这些幼树在6月经历了约1个月的干旱期,并在温室中接受不同的温度处理。同时,通过从两个可能为木材形成提供碳的组织(形成层和内部木质部)中提取糖类化合物来测定NSC浓度。使用混合效应模型来评估和量化潜在关系。将说明分生组织活性的总木质部细胞建模为水、蔗糖和d - 松醇的函数(条件r²为0.79)。水分可利用性被列为解释总木质部细胞产生的最重要因素,而碳的贡献较低。在水分亏缺条件下,形成层停止分裂,可能是为了限制在没有足够水分的情况下仍处于分化状态的细胞数量。相比之下,碳因素在解释活细胞变异方面被列为最重要因素(条件r²为0.49),这突出了木质部发育过程中的功能需求,其次是提供NSCs的组织(形成层)和水分可利用性。这项研究精确地证明了碳和水在以分生组织活性和组织形成表示的结构生长中的作用。