Nancy Jane Y, Khanna Nehemiah H, Arputharaj Kannan
Ramanujan Computing Centre, Anna University, Chennai 600025, India.
Ramanujan Computing Centre, Anna University, Chennai 600025, India.
J Biomed Inform. 2016 Apr;60:169-76. doi: 10.1016/j.jbi.2016.01.014. Epub 2016 Feb 2.
Parkinson's disease (PD) is a movement disorder that affects the patient's nervous system and health-care applications mostly uses wearable sensors to collect these data. Since these sensors generate time stamped data, analyzing gait disturbances in PD becomes challenging task. The objective of this paper is to develop an effective clinical decision-making system (CDMS) that aids the physician in diagnosing the severity of gait disturbances in PD affected patients. This paper presents a Q-backpropagated time delay neural network (Q-BTDNN) classifier that builds a temporal classification model, which performs the task of classification and prediction in CDMS. The proposed Q-learning induced backpropagation (Q-BP) training algorithm trains the Q-BTDNN by generating a reinforced error signal. The network's weights are adjusted through backpropagating the generated error signal. For experimentation, the proposed work uses a PD gait database, which contains gait measures collected through wearable sensors from three different PD research studies. The experimental result proves the efficiency of Q-BP in terms of its improved classification accuracy of 91.49%, 92.19% and 90.91% with three datasets accordingly compared to other neural network training algorithms.
帕金森病(PD)是一种影响患者神经系统的运动障碍,医疗保健应用大多使用可穿戴传感器来收集这些数据。由于这些传感器生成带时间戳的数据,分析帕金森病患者的步态障碍成为一项具有挑战性的任务。本文的目的是开发一种有效的临床决策系统(CDMS),以帮助医生诊断帕金森病患者步态障碍的严重程度。本文提出了一种Q反向传播时延神经网络(Q-BTDNN)分类器,该分类器构建了一个时间分类模型,用于在CDMS中执行分类和预测任务。所提出的Q学习诱导反向传播(Q-BP)训练算法通过生成强化误差信号来训练Q-BTDNN。通过反向传播生成的误差信号来调整网络权重。为了进行实验,所提出的工作使用了一个帕金森病步态数据库,该数据库包含通过可穿戴传感器从三项不同的帕金森病研究中收集的步态测量数据。实验结果证明了Q-BP的有效性,与其他神经网络训练算法相比,它在三个数据集上的分类准确率分别提高到91.49%、92.19%和90.91%。