Suppr超能文献

可解释的机器学习综合人体步态恶化分析

Interpretable machine learning comprehensive human gait deterioration analysis.

作者信息

Alharthi Abdullah S

机构信息

Department of Electrical Engineering, College of Engineering King Khalid University, Abha, Saudi Arabia.

出版信息

Front Neuroinform. 2024 Aug 23;18:1451529. doi: 10.3389/fninf.2024.1451529. eCollection 2024.

Abstract

INTRODUCTION

Gait analysis, an expanding research area, employs non-invasive sensors and machine learning techniques for a range of applications. In this study, we investigate the impact of cognitive decline conditions on gait performance, drawing connections between gait deterioration in Parkinson's Disease (PD) and healthy individuals dual tasking.

METHODS

We employ Explainable Artificial Intelligence (XAI) specifically Layer-Wise Relevance Propagation (LRP), in conjunction with Convolutional Neural Networks (CNN) to interpret the intricate patterns in gait dynamics influenced by cognitive loads.

RESULTS

We achieved classification accuracies of 98% F1 scores for PD dataset and 95.5% F1 scores for the combined PD dataset. Furthermore, we explore the significance of cognitive load in healthy gait analysis, resulting in robust classification accuracies of 90% ± 10% F1 scores for subject cognitive load verification. Our findings reveal significant alterations in gait parameters under cognitive decline conditions, highlighting the distinctive patterns associated with PD-related gait impairment and those induced by multitasking in healthy subjects. Through advanced XAI techniques (LRP), we decipher the underlying features contributing to gait changes, providing insights into specific aspects affected by cognitive decline.

DISCUSSION

Our study establishes a novel perspective on gait analysis, demonstrating the applicability of XAI in elucidating the shared characteristics of gait disturbances in PD and dual-task scenarios in healthy individuals. The interpretability offered by XAI enhances our ability to discern subtle variations in gait patterns, contributing to a more nuanced comprehension of the factors influencing gait dynamics in PD and dual-task conditions, emphasizing the role of XAI in unraveling the intricacies of gait control.

摘要

引言

步态分析是一个不断发展的研究领域,它采用非侵入性传感器和机器学习技术来实现一系列应用。在本研究中,我们调查认知衰退状况对步态表现的影响,探寻帕金森病(PD)患者的步态恶化与健康个体执行双重任务之间的联系。

方法

我们采用可解释人工智能(XAI),特别是逐层相关传播(LRP),结合卷积神经网络(CNN)来解读受认知负荷影响的步态动力学中的复杂模式。

结果

我们在PD数据集上实现了98%的F1分数分类准确率,在合并的PD数据集上实现了95.5%的F1分数分类准确率。此外,我们探讨了认知负荷在健康步态分析中的重要性,在受试者认知负荷验证方面实现了90%±10%的F1分数稳健分类准确率。我们的研究结果揭示了认知衰退状况下步态参数的显著变化,突出了与PD相关步态损伤以及健康受试者多任务诱导的步态损伤相关的独特模式。通过先进的XAI技术(LRP),我们解读了导致步态变化的潜在特征,深入了解了受认知衰退影响的具体方面。

讨论

我们的研究为步态分析建立了一个新的视角,证明了XAI在阐明PD患者步态障碍和健康个体双重任务场景中步态障碍共同特征方面的适用性。XAI提供的可解释性增强了我们辨别步态模式细微变化的能力,有助于更细致地理解影响PD和双重任务条件下步态动力学的因素,强调了XAI在揭示步态控制复杂性方面的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9897/11377268/a7f0e0038eac/fninf-18-1451529-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验