Suppr超能文献

Divalent Amino-Acid-Based Amphiphilic Antioxidants: Synthesis, Self-Assembling Properties, and Biological Evaluation.

作者信息

Rosselin Marie, Meyer Grégory, Guillet Pierre, Cheviet Thomas, Walther Guillaume, Meister Annette, Hadjipavlou-Litina Dimitra, Durand Grégory

机构信息

Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Cedex 9 Avignon, France.

Avignon University , Laboratoire de Pharm-Ecologie Cardiovasculaire LAPEC EA4278, F-84000 Avignon, France.

出版信息

Bioconjug Chem. 2016 Mar 16;27(3):772-81. doi: 10.1021/acs.bioconjchem.6b00002. Epub 2016 Feb 22.

Abstract

We report herein the synthesis of a divalent amphiphilic carrier onto which α-phenyl-N-tert-butyl nitrone (PBN) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) antioxidants were grafted to give the divalent derivative called FATxPBN. The divalent carrier consists of two lysine amino acids as a scaffold upon which the antioxidant moieties are grafted, a perfluorinated chain that supplies hydrophobicity, and a sugar-based polar headgroup that ensures water solubility. For the sake of comparison, a divalent PBN derivative called FADiPBN was also synthesized. The self-aggregation properties of FATxPBN and FADiPBN were studied by means of surface tension, dynamic light scattering, and transmission electron microscopy methods, and showed they form small micelles (i.e., 12 and 6 nm diameter, respectively) at submillimolar concentrations (i.e., 0.01 and 0.05 mM, respectively), in agreement with partition coefficient values. The superior antioxidant properties of FATxPBN over FADiPBN and the parent compounds PBN and Trolox were demonstrated using in vitro ABTS(•+) reduction (98%) and soybean lipoxygenase inhibition (94%) assays. Finally, FATxPBN was found to significantly inhibit hyperglycemia-induced toxicity on an ex-vivo rat model, demonstrating its potency as a bioactive antioxidant against oxidative stress-induced damage.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验