Poger David, Caron Bertrand, Mark Alan E
School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia.
School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia.
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1556-65. doi: 10.1016/j.bbamem.2016.01.029. Epub 2016 Feb 3.
Biological membranes display a great diversity in lipid composition and lateral structure that is crucial in a variety of cellular functions. Simulations of membranes have contributed significantly to the understanding of the properties, functions and behaviour of membranes and membrane-protein assemblies. This success relies on the ability of the force field used to describe lipid-lipid and lipid-environment interactions accurately, reproducibly and realistically. In this review, we present some recent progress in lipid force-field development and validation strategies. In particular, we highlight how a range of properties obtained from various experimental techniques on lipid bilayers and membranes, can be used to assess the quality of a force field. We discuss the limitations and assumptions that are inherent to both computational and experimental approaches and how these can influence the comparison between simulations and experimental data. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
生物膜在脂质组成和横向结构上表现出极大的多样性,这在多种细胞功能中至关重要。膜的模拟对理解膜以及膜蛋白组装体的性质、功能和行为做出了重大贡献。这一成功依赖于所使用的力场能够准确、可重复且真实地描述脂质-脂质和脂质-环境相互作用。在本综述中,我们展示了脂质力场开发和验证策略方面的一些最新进展。特别地,我们强调了如何利用从脂质双层和膜的各种实验技术获得的一系列性质来评估力场的质量。我们讨论了计算方法和实验方法固有的局限性和假设,以及这些如何影响模拟与实验数据之间的比较。本文是由J.C. Gumbart和Sergei Noskov编辑的名为《膜蛋白》的特刊的一部分。