West Ana, Brummel Benjamin E, Braun Anthony R, Rhoades Elizabeth, Sachs Jonathan N
Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA.
Department of Neuroscience, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA.
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1594-609. doi: 10.1016/j.bbamem.2016.03.012. Epub 2016 Mar 10.
We review experimental and simulation approaches that have been used to determine curvature generation and remodeling of lipid bilayers by membrane-bending proteins. Particular emphasis is placed on the complementary approaches used to study α-Synuclein (αSyn), a major protein involved in Parkinson's disease (PD). Recent cellular and biophysical experiments have shown that the protein 1) deforms the native structure of mitochondrial and model membranes; and 2) inhibits vesicular fusion. Today's advanced experimental and computational technology has made it possible to quantify these protein-induced changes in membrane shape and material properties. Collectively, experiments, theory and multi-scale simulation techniques have established the key physical determinants of membrane remodeling and rigidity: protein binding energy, protein partition depth, protein density, and membrane tension. Despite the exciting and significant progress made in recent years in these areas, challenges remain in connecting biophysical insights to the cellular processes that lead to disease. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
我们回顾了用于确定膜弯曲蛋白引起的脂质双层曲率生成和重塑的实验和模拟方法。特别强调了用于研究α-突触核蛋白(αSyn)的互补方法,αSyn是帕金森病(PD)中的一种主要蛋白质。最近的细胞和生物物理实验表明,该蛋白质1)使线粒体膜和模型膜的天然结构变形;2)抑制囊泡融合。当今先进的实验和计算技术使得量化这些蛋白质引起的膜形状和材料特性变化成为可能。总体而言,实验、理论和多尺度模拟技术已经确定了膜重塑和刚性的关键物理决定因素:蛋白质结合能、蛋白质分配深度、蛋白质密度和膜张力。尽管近年来在这些领域取得了令人兴奋的重大进展,但在将生物物理见解与导致疾病的细胞过程联系起来方面仍存在挑战。本文是由J.C. Gumbart和Sergei Noskov编辑的名为《膜蛋白》的特刊的一部分。