Suppr超能文献

卡诺夫斯基性能评分和放射剂量可预测因小细胞肺癌局部区域复发而接受再照射患者的生存率。

Karnosky Performance Score and Radiation Dose Predict Survival of Patients Re-irradiated for a Locoregional Recurrence of Small Cell Lung Cancer.

作者信息

Käsmann Lukas, Janssen Stefan, Schild Steven E, Rades Dirk

机构信息

Department of Radiation Oncology, University of Lübeck, Lübeck, Germany.

Department of Radiation Oncology, University of Lübeck, Lübeck, Germany Medical Practice for Radiotherapy and Radiation Oncology, Hannover, Germany.

出版信息

Anticancer Res. 2016 Feb;36(2):803-5.

Abstract

AIM

When patients with small cell lung cancer (SCLC) experience locoregional recurrence, surgery is often not employed as salvage therapy. Systemic chemotherapy and radiotherapy are often used. Many radiation oncologists are reluctant to deliver a second course of radiotherapy. However, select patients may benefit from re-irradiation. This study aimed to identify these patients.

PATIENTS AND METHODS

In patients receiving re-irradiation for a locoregional recurrence of SCLC, 11 potential prognostic factors were analyzed for survival.

RESULTS

Survival was positively associated with a Karnofsky performance score ≥80 (p=0.003) and a cumulative dose >90 Gy (p=0.026). A trend was observed for younger age, longer interval between first course of radiotherapy and re-irradiation, a greater dose of re-irradiation and for concurrent chemotherapy.

CONCLUSION

Significant predictors of survival in patients re-irradiated for a locoregional recurrence of SCLC were identified. Patients with a good performance status can benefit from re-irradiation if administered in sufficient doses.

摘要

目的

小细胞肺癌(SCLC)患者出现局部区域复发时,手术通常不作为挽救性治疗手段。常采用全身化疗和放疗。许多放射肿瘤学家不愿进行第二轮放疗。然而,部分患者可能从再次放疗中获益。本研究旨在确定这些患者。

患者与方法

对因SCLC局部区域复发接受再次放疗的患者,分析11个潜在的预后因素对生存的影响。

结果

生存与卡氏评分≥80(p = 0.003)以及累积剂量>90 Gy(p = 0.026)呈正相关。观察到年龄较轻、首次放疗与再次放疗之间间隔时间较长、再次放疗剂量较大以及同步化疗存在生存趋势。

结论

确定了因SCLC局部区域复发接受再次放疗患者生存的显著预测因素。身体状况良好的患者如果给予足够剂量的再次放疗可从中获益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验