Khandaker Md Shahriar K, Dudek Daniel M, Beers Eric P, Dillard David A, Bevan David R
Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, VA, United States.
Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, VA, United States.
J Mech Behav Biomed Mater. 2016 Aug;61:110-121. doi: 10.1016/j.jmbbm.2016.01.017. Epub 2016 Jan 25.
The mechanisms responsible for the properties of disordered elastomeric proteins are not well known. To better understand the relationship between elastomeric behavior and amino acid sequence, we investigated resilin, a disordered rubber-like protein, found in specialized regions of the cuticle of insects. Resilin of Drosophila melanogaster contains Gly-rich repetitive motifs comprised of the amino acids, PSSSYGAPGGGNGGR, which confer elastic properties to resilin. The repetitive motifs of insect resilin can be divided into smaller partially conserved building blocks: PSS, SYGAP, GGGN and GGR. Using molecular dynamics (MD) simulations, we studied the relative roles of SYGAP, and its less common variants SYSAP and TYGAP, on the elastomeric properties of resilin. Results showed that SYGAP adopts a bent structure that is one-half to one-third the end-to-end length of the other motifs having an equal number of amino acids but containing SYSAP or TYGAP substituted for SYGAP. The bent structure of SYGAP forms due to conformational freedom of glycine, and hydrogen bonding within the motif apparently plays a role in maintaining this conformation. These structural features of SYGAP result in higher extensibility compared to other motifs, which may contribute to elastic properties at the macroscopic level. Overall, the results are consistent with a role for the SYGAP building block in the elastomeric properties of these disordered proteins. What we learned from simulating the repetitive motifs of resilin may be applicable to the biology and mechanics of other elastomeric biomaterials, and may provide us the deeper understanding of their unique properties.
导致无序弹性蛋白特性的机制尚不清楚。为了更好地理解弹性行为与氨基酸序列之间的关系,我们研究了弹性蛋白,一种在昆虫角质层特殊区域发现的无序橡胶状蛋白质。果蝇的弹性蛋白含有由氨基酸PSSSYGAPGGGNGGR组成的富含甘氨酸的重复基序,这些基序赋予弹性蛋白弹性特性。昆虫弹性蛋白的重复基序可分为较小的部分保守结构单元:PSS、SYGAP、GGGN和GGR。利用分子动力学(MD)模拟,我们研究了SYGAP及其较不常见的变体SYSAP和TYGAP对弹性蛋白弹性特性的相对作用。结果表明,SYGAP呈现出一种弯曲结构,其端到端长度是其他具有相同氨基酸数量但用SYSAP或TYGAP取代SYGAP的基序的二分之一到三分之一。SYGAP的弯曲结构是由于甘氨酸的构象自由度形成的,基序内的氢键显然在维持这种构象中起作用。与其他基序相比,SYGAP的这些结构特征导致更高的伸展性,这可能在宏观水平上有助于弹性特性。总体而言,结果与SYGAP结构单元在这些无序蛋白的弹性特性中所起的作用一致。我们从模拟弹性蛋白的重复基序中学到的知识可能适用于其他弹性生物材料的生物学和力学,并可能使我们对它们的独特特性有更深入的理解。