Marsalek Ondrej, Markland Thomas E
Department of Chemistry, Stanford University, Stanford, California 94305, USA.
J Chem Phys. 2016 Feb 7;144(5):054112. doi: 10.1063/1.4941093.
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.
路径积分分子动力学模拟,结合使用电子结构理论对相互作用进行从头算评估,纳入了电子和原子核的量子力学性质,这对于准确描述包含轻原子核的系统至关重要。然而,传统上路径积分模拟所需的计算成本比经典处理原子核的成本高出约两个数量级,这使得它们对于大多数应用来说成本过高。在这里,我们表明,通过将我们的环聚合物收缩方法扩展到从头算分子动力学模拟,可以显著降低路径积分模拟的成本。通过使用密度泛函紧束缚作为参考系统,我们表明我们的环聚合物收缩方案能快速且系统地收敛到全路径积分密度泛函理论结果。我们在液态水以及反应性质子化和去质子化水二聚体系统的从头算模拟中展示了这种方法的效率。我们发现,使用仅收缩到环聚合物质心的方法就能准确捕捉绝大多数核量子效应,这需要与经典模拟相同数量的密度泛函理论计算。结合使用相同参考系统的多时间步方案,该方案允许增加时间步长,这种方法与典型的经典从头算分子动力学模拟一样快,比全路径积分计算快35倍,同时仍然精确地包含了原子核的量子采样。因此,这一进展提供了一条以可忽略不计的计算成本在从头算分子动力学模拟中常规纳入核量子效应的途径。