Suppr超能文献

通过使用半经验参考势的分子动力学模拟实现热力学性质的可负担路径积分

Affordable Path Integral for Thermodynamic Properties via Molecular Dynamics Simulations Using Semiempirical Reference Potential.

作者信息

Xue Yuanfei, Wang Jia-Ning, Hu Wenxin, Zheng Jun, Li Yongle, Pan Xiaoliang, Mo Yan, Shao Yihan, Wang Lu, Mei Ye

机构信息

State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.

The Computer Center, School of Data Science & Engineering, East China Normal University, Shanghai 200062, China.

出版信息

J Phys Chem A. 2021 Dec 23;125(50):10677-10685. doi: 10.1021/acs.jpca.1c07727. Epub 2021 Dec 12.

Abstract

Path integral molecular dynamics (PIMD) is becoming a routinely applied method for incorporating the nuclear quantum effect in computer simulations. However, direct PIMD simulations at an level of theory are formidably expensive. Using the protonated 1,8-bis(dimethylamino)naphthalene molecule as an example, we show in this work that the computational expense for the intramolecular proton transfer between the two nitrogen atoms can be remarkably reduced by implementing the idea of reference-potential methods. The simulation time can be easily extended to a scale of nanoseconds while maintaining the accuracy on an level of theory for thermodynamic properties. In addition, postprocessing can be carried out in parallel on massive computer nodes. A 545-fold reduction in the total CPU time can be achieved in this way as compared to a direct PIMD simulation at the same level of theory.

摘要

路径积分分子动力学(PIMD)正成为计算机模拟中纳入核量子效应的常规应用方法。然而,在理论水平上进行直接的PIMD模拟成本极高。以质子化的1,8 - 双(二甲基氨基)萘分子为例,我们在这项工作中表明,通过实施参考势方法的理念,可以显著降低两个氮原子之间分子内质子转移的计算成本。在保持热力学性质理论水平精度的同时,模拟时间可以轻松扩展到纳秒尺度。此外,后处理可以在大量计算机节点上并行进行。与相同理论水平的直接PIMD模拟相比,这样可以实现总CPU时间减少545倍。

相似文献

8
Simulating Nuclear and Electronic Quantum Effects in Enzymes.模拟酶中的核量子效应和电子量子效应。
Methods Enzymol. 2016;577:389-418. doi: 10.1016/bs.mie.2016.05.047. Epub 2016 Jul 15.

本文引用的文献

1
Doubly Polarized QM/MM with Machine Learning Chaperone Polarizability.双重极化 QM/MM 与机器学习伴护极化率。
J Chem Theory Comput. 2021 Dec 14;17(12):7682-7695. doi: 10.1021/acs.jctc.1c00567. Epub 2021 Nov 1.
3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验