Taubert A, Hermosilla C, Silva L M R, Wieck A, Failing K, Mazurek S
Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany.
Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany.
Parasitol Res. 2016 May;115(5):2023-34. doi: 10.1007/s00436-016-4946-0. Epub 2016 Feb 6.
Besnoitia besnoiti is an obligate intracellular and emerging coccidian parasite of cattle with a significant economic impact on cattle industry. During acute infection, fast-proliferating tachyzoites are continuously formed mainly in endothelial host cells of infected animals. Given that offspring formation is a highly energy and cell building block demanding process, the parasite needs to exploit host cellular metabolism to meet its metabolic demands. Here, we analyzed the metabolic signatures of B. besnoiti-infected endothelial host cells and aimed to influence parasite proliferation by inhibitors of specific metabolic pathways. The following inhibitors were tested: fluoro 2-deoxy-D-glucose and 2-deoxy-D-glucose (FDG, DG; inhibitors of glycolysis), 6-diazo-5-oxo-L-norleucin (DON; inhibitor of glutaminolysis), dichloroacetate (DCA; inhibitor of pyruvate dehydrogenase kinase which favorites channeling of glucose carbons into the TCA cycle) and adenosine-monophosphate (AMP; inhibitor of ribose 5-P synthesis). Overall, B. besnoiti infections of bovine endothelial cells induced a significant and infection rate-dependent increase of glucose, lactate, glutamine, glutamate, pyruvate, alanine, and serine conversion rates which together indicate a parasite-triggered up-regulation of glycolysis and glutaminolysis. Thus, addition of DON, FDG, and DG into the cultivation medium of B. besnoiti infected endothelial cells led to a dose-dependent inhibition of parasite replication (4 μM DON, 99.5 % inhibition; 2 mM FDG, 99.1 % inhibition; 2 mM DG, 93 % inhibition; and 8 mM DCA, 71.9 % inhibition). In contrast, AMP had no significant effects on total tachyzoite production up to a concentration of 20 mM. Together, these data may open new strategies for the development of therapeutics for B. besnoiti infections.
贝氏贝诺孢子虫是一种专性细胞内寄生且新出现的牛球虫寄生虫,对养牛业具有重大经济影响。在急性感染期间,快速增殖的速殖子主要在受感染动物的内皮宿主细胞中持续形成。鉴于子代形成是一个对能量和细胞构建模块需求极高的过程,该寄生虫需要利用宿主细胞代谢来满足其代谢需求。在此,我们分析了感染贝氏贝诺孢子虫的内皮宿主细胞的代谢特征,并旨在通过特定代谢途径的抑制剂来影响寄生虫的增殖。测试了以下抑制剂:氟代2-脱氧-D-葡萄糖和2-脱氧-D-葡萄糖(FDG、DG;糖酵解抑制剂)、6-重氮-5-氧代-L-正亮氨酸(DON;谷氨酰胺分解抑制剂)、二氯乙酸(DCA;丙酮酸脱氢酶激酶抑制剂,其有利于将葡萄糖碳导入三羧酸循环)和单磷酸腺苷(AMP;5-磷酸核糖合成抑制剂)。总体而言,牛内皮细胞感染贝氏贝诺孢子虫会导致葡萄糖、乳酸、谷氨酰胺、谷氨酸、丙酮酸、丙氨酸和丝氨酸转化率显著且感染率依赖性增加,这共同表明寄生虫引发了糖酵解和谷氨酰胺分解的上调。因此,向感染贝氏贝诺孢子虫的内皮细胞培养基中添加DON、FDG和DG会导致寄生虫复制受到剂量依赖性抑制(4 μM DON,抑制率99.5%;2 mM FDG,抑制率99.1%;2 mM DG,抑制率93%;8 mM DCA,抑制率71.9%)。相比之下,浓度高达20 mM时,AMP对速殖子总产量无显著影响。总之,这些数据可能为开发治疗贝氏贝诺孢子虫感染的疗法开辟新策略。