Dubreuil Alexis M, Brunel Nicolas
Laboratoire de Physique Théorique, Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France.
Laboratoire Jean Perrin, UPMC, 4 place Jussieu, 75005, Paris, France.
J Comput Neurosci. 2016 Apr;40(2):157-75. doi: 10.1007/s10827-016-0590-z. Epub 2016 Feb 6.
We study the memory performance of a class of modular attractor neural networks, where modules are potentially fully-connected networks connected to each other via diluted long-range connections. On this anatomical architecture we store memory patterns of activity using a Willshaw-type learning rule. P patterns are split in categories, such that patterns of the same category activate the same set of modules. We first compute the maximal storage capacity of these networks. We then investigate their error-correction properties through an exhaustive exploration of parameter space, and identify regions where the networks behave as an associative memory device. The crucial parameters that control the retrieval abilities of the network are (1) the ratio between the number of synaptic contacts of long- and short-range origins (2) the number of categories in which a module is activated and (3) the amount of local inhibition. We discuss the relationship between our model and networks of cortical patches that have been observed in different cortical areas.
我们研究了一类模块化吸引子神经网络的记忆性能,其中模块可能是通过稀疏的长程连接相互连接的全连接网络。在这种解剖结构上,我们使用威尔肖型学习规则存储活动的记忆模式。P个模式被分成不同类别,使得同一类别的模式激活同一组模块。我们首先计算这些网络的最大存储容量。然后,我们通过对参数空间的详尽探索来研究它们的纠错特性,并确定网络表现为联想记忆装置的区域。控制网络检索能力的关键参数是:(1)长程和短程起源的突触接触数量之比;(2)一个模块被激活的类别数量;(3)局部抑制的量。我们讨论了我们的模型与在不同皮质区域观察到的皮质斑块网络之间的关系。