Suppr超能文献

大脑皮层中相关语义记忆的能力。

The Capacity for Correlated Semantic Memories in the Cortex.

作者信息

Boboeva Vezha, Brasselet Romain, Treves Alessandro

机构信息

Cognitive Neuroscience, SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy.

Kavli Institute for Systems Neuroscience/Centre for Neural Computation, Norwegian University of Science and Technology, 7491 Trondheim, Norway.

出版信息

Entropy (Basel). 2018 Oct 26;20(11):824. doi: 10.3390/e20110824.

Abstract

A statistical analysis of semantic memory should reflect the complex, multifactorial structure of the relations among its items. Still, a dominant paradigm in the study of semantic memory has been the idea that the mental representation of concepts is structured along a simple branching tree spanned by superordinate and subordinate categories. We propose a generative model of item representation with correlations that overcomes the limitations of a tree structure. The items are generated through "factors" that represent semantic features or real-world attributes. The correlation between items has its source in the extent to which items share such factors and the strength of such factors: if many factors are balanced, correlations are overall low; whereas if a few factors dominate, they become strong. Our model allows for correlations that are neither trivial nor hierarchical, but may reproduce the general spectrum of correlations present in a dataset of nouns. We find that such correlations reduce the storage capacity of a Potts network to a limited extent, so that the number of concepts that can be stored and retrieved in a large, human-scale cortical network may still be of order 10, as originally estimated without correlations. When this storage capacity is exceeded, however, retrieval fails completely only for balanced factors; above a critical degree of imbalance, a phase transition leads to a regime where the network still extracts considerable information about the cued item, even if not recovering its detailed representation: partial categorization seems to emerge spontaneously as a consequence of the dominance of particular factors, rather than being imposed ad hoc. We argue this to be a relevant model of semantic memory resilience in Tulving's remember/know paradigms.

摘要

语义记忆的统计分析应反映其项目之间关系的复杂多因素结构。然而,语义记忆研究中的一个主导范式一直是这样一种观点,即概念的心理表征是沿着由上位和下位类别构成的简单分支树结构组织的。我们提出了一种具有相关性的项目表征生成模型,该模型克服了树结构的局限性。项目通过代表语义特征或现实世界属性的“因素”生成。项目之间的相关性源于项目共享此类因素的程度以及此类因素的强度:如果许多因素平衡,则相关性总体较低;而如果少数因素占主导,则相关性会变强。我们的模型允许存在既非平凡也非层级的相关性,但可以重现名词数据集中存在的一般相关性谱。我们发现,这种相关性在一定程度上降低了Potts网络的存储容量,因此在一个大型的、人类规模的皮层网络中能够存储和检索的概念数量可能仍然约为10个,这与最初在不考虑相关性的情况下估计的数量相同。然而,当超过这个存储容量时,只有在因素平衡的情况下检索才会完全失败;在超过临界不平衡程度时,会发生相变,导致网络仍能提取关于提示项目的大量信息,即使无法恢复其详细表征:部分分类似乎是特定因素占主导的结果,而不是临时强加的。我们认为这是图尔文记忆/知晓范式中语义记忆弹性的一个相关模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5fb/7512385/14c3241246a8/entropy-20-00824-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验