Bhardwaj A, Chauhan N S, Goel S, Singh Vijeta, Pulikkotil J J, Senguttuvan T D, Misra D K
Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, New Delhi-110012, India.
Phys Chem Chem Phys. 2016 Feb 17;18(8):6191-200. doi: 10.1039/c5cp07482g.
Zintl compounds are potential candidates for efficient thermoelectric materials, because typically they are small band gap semiconductors. In addition, such compounds allow fine tuning of the carrier concentration by chemical doping for the optimization of thermoelectric performance. Herein, such tunability is demonstrated in Mg3Sb2-based Zintl compounds via Zn(2+) doping at the Mg(2+) site of the anionic framework (Mg2Sb2)(2-), in the series Mg3-xZnxSb2 (0 ≤ x ≤ 0.1). The materials have been successfully synthesized using the spark plasma sintering (SPS) technique. X-ray diffraction (XRD) analysis confirms a single solid solution phase of Mg3-xZnxSb2 (0 ≤ x ≤ 0.1). The thermoelectric properties are characterized by the Seebeck coefficient, electrical conductivity, and thermal conductivity measurements from 323 K to 773 K. Isoelectronic Zn substitution at the Mg site presents the controlled variation in the carrier concentration for optimizing the high power factor and reduced thermal conductivity. These results lead to a substantial increase in ZT of 0.37 at 773 K for a composition with x = 0.10 which is ∼42% higher than undoped Mg3Sb2. The electronic transport data for the Mg3-xZnxSb2 (0 ≤ x ≤ 0.1) compound are analyzed using a single parabolic band model predicting that Mg2.9Zn0.1Sb2 exhibits a near-optimal carrier concentration for high ZT. The electronic structure of transport properties of these disordered Mg3-xZnxSb2 (0 ≤ x ≤ 0.1) is also studied using density functional theory and the results obtained are in good agreement with experimental results. The low cost, lightness and non-toxicity of the constituent elements make these materials ideal for mid-temperature thermoelectric applications.
津特耳化合物是高效热电材料的潜在候选者,因为通常它们是小带隙半导体。此外,这类化合物可通过化学掺杂对载流子浓度进行微调,以优化热电性能。在此,通过在阴离子骨架(Mg2Sb2)(2-)的Mg(2+)位点进行Zn(2+)掺杂,在Mg3-xZnxSb2(0≤x≤0.1)系列中展示了Mg3Sb2基津特耳化合物的这种可调性。这些材料已通过放电等离子体烧结(SPS)技术成功合成。X射线衍射(XRD)分析证实了Mg3-xZnxSb2(0≤x≤0.1)为单一固溶体相。通过在323 K至773 K范围内测量塞贝克系数、电导率和热导率来表征热电性能。在Mg位点进行等电子Zn替代可控制载流子浓度的变化,以优化高功率因数并降低热导率。这些结果使得x = 0.10的组合物在773 K时的ZT大幅提高至0.37,比未掺杂的Mg3Sb2高出约42%。使用单抛物线带模型分析了Mg3-xZnxSb2(0≤x≤0.1)化合物的电子输运数据,预测Mg2.9Zn0.1Sb2具有接近高ZT的最佳载流子浓度。还使用密度泛函理论研究了这些无序Mg3-xZnxSb2(0≤x≤0.1)的输运性质的电子结构,所得结果与实验结果吻合良好。组成元素的低成本、轻质和无毒特性使这些材料成为中温热电应用的理想选择。