Owais Muhammad, Luo Xian, Rehman Mudassar, Mushtaq Ray Tahir, Alkahtani Mohammed
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
Institute of Rehabilitation Medicine and Health Care, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China.
Sci Rep. 2025 Mar 19;15(1):9419. doi: 10.1038/s41598-025-92809-9.
The thermoelectric performance of MgSb was systematically enhanced through doping with chromium (Cr) and iron (Fe), offering new insights into advanced materials for energy conversion applications. Using first-principles calculations within the CASTEP framework and Boltzmann transport theory in BoltzTraP, the study evaluated the electronic structure and thermoelectric properties of doped MgSb. Cr doping led to a significant increase in the Seebeck coefficient, reaching 739 µV/K, and an electronic ZT (eZT) value of 0.82-demonstrating a 40% improvement in thermoelectric efficiency compared to undoped MgSb. Fe doping further reduced the bandgap to 0.086 eV, optimizing carrier transport and achieving a Seebeck coefficient of 730 µV/K and a maximum electronic ZT (eZT) of 0.966-a 55% enhancement over the pristine material and 18% higher than Cr-doped variants. These findings represent a significant advancement over previously reported thermoelectric materials, showcasing the potential of Cr and Fe doping to strategically tailor electronic structures and minimize electronic thermal conductivity. With superior eZT values, Fe-doped MgSb emerges as a promising candidate for next-generation thermoelectric applications, including waste heat recovery, renewable energy systems, and sustainable power generation technologies. This study underscores the critical role of transition metal doping in driving the design of high-performance thermoelectric materials, offering transformative prospects for energy efficiency and sustainability.
通过用铬(Cr)和铁(Fe)掺杂,MgSb的热电性能得到了系统增强,这为能量转换应用的先进材料提供了新的见解。该研究利用CASTEP框架内的第一性原理计算和BoltzTraP中的玻尔兹曼输运理论,评估了掺杂MgSb的电子结构和热电性能。Cr掺杂导致塞贝克系数显著增加,达到739 μV/K,电子ZT(eZT)值为0.82,与未掺杂的MgSb相比,热电效率提高了40%。Fe掺杂进一步将带隙降低至0.086 eV,优化了载流子传输,实现了730 μV/K的塞贝克系数和0.966的最大电子ZT(eZT),比原始材料提高了55%,比Cr掺杂变体高18%。这些发现代表了相对于先前报道的热电材料的重大进步,展示了Cr和Fe掺杂在策略性调整电子结构和最小化电子热导率方面的潜力。凭借优异的eZT值,Fe掺杂的MgSb成为下一代热电应用的有希望的候选材料,包括废热回收、可再生能源系统和可持续发电技术。这项研究强调了过渡金属掺杂在推动高性能热电材料设计中的关键作用,为能源效率和可持续性提供了变革性前景。