Suppr超能文献

动脉粥样硬化的正电子发射断层扫描/磁共振成像

PET/MRI of atherosclerosis.

作者信息

Aizaz Mueez, Moonen Rik P M, van der Pol Jochem A J, Prieto Claudia, Botnar René M, Kooi M Eline

机构信息

Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.

CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.

出版信息

Cardiovasc Diagn Ther. 2020 Aug;10(4):1120-1139. doi: 10.21037/cdt.2020.02.09.

Abstract

Myocardial infarction and stroke are the most prevalent global causes of death. Each year 15 million people worldwide die due to myocardial infarction or stroke. Rupture of a vulnerable atherosclerotic plaque is the main underlying cause of stroke and myocardial infarction. Key features of a vulnerable plaque are inflammation, a large lipid-rich necrotic core (LRNC) with a thin or ruptured overlying fibrous cap, and intraplaque hemorrhage (IPH). Noninvasive imaging of these features could have a role in risk stratification of myocardial infarction and stroke and can potentially be utilized for treatment guidance and monitoring. The recent development of hybrid PET/MRI combining the superior soft tissue contrast of MRI with the opportunity to visualize specific plaque features using various radioactive tracers, paves the way for comprehensive plaque imaging. In this review, the use of hybrid PET/MRI for atherosclerotic plaque imaging in carotid and coronary arteries is discussed. The pros and cons of different hybrid PET/MRI systems are reviewed. The challenges in the development of PET/MRI and potential solutions are described. An overview of PET and MRI acquisition techniques for imaging of atherosclerosis including motion correction is provided, followed by a summary of vessel wall imaging PET/MRI studies in patients with carotid and coronary artery disease. Finally, the future of imaging of atherosclerosis with PET/MRI is discussed.

摘要

心肌梗死和中风是全球最常见的死亡原因。全球每年有1500万人死于心肌梗死或中风。易损动脉粥样硬化斑块破裂是中风和心肌梗死的主要潜在原因。易损斑块的关键特征是炎症、富含脂质的大坏死核心(LRNC)且其上覆盖的纤维帽薄或破裂,以及斑块内出血(IPH)。对这些特征进行无创成像可能在心肌梗死和中风的风险分层中发挥作用,并有可能用于治疗指导和监测。将MRI卓越的软组织对比度与使用各种放射性示踪剂可视化特定斑块特征的机会相结合的新型PET/MRI,为全面的斑块成像铺平了道路。在本综述中,将讨论PET/MRI在颈动脉和冠状动脉粥样硬化斑块成像中的应用。回顾了不同PET/MRI系统的优缺点。描述了PET/MRI开发中的挑战及潜在解决方案。提供了用于动脉粥样硬化成像(包括运动校正)的PET和MRI采集技术概述,随后总结了颈动脉和冠状动脉疾病患者的血管壁成像PET/MRI研究。最后,讨论了PET/MRI在动脉粥样硬化成像方面的未来。

相似文献

1
PET/MRI of atherosclerosis.
Cardiovasc Diagn Ther. 2020 Aug;10(4):1120-1139. doi: 10.21037/cdt.2020.02.09.
2
MR imaging of vulnerable carotid plaque.
Cardiovasc Diagn Ther. 2020 Aug;10(4):1019-1031. doi: 10.21037/cdt.2020.03.12.
3
Contemporary carotid imaging: from degree of stenosis to plaque vulnerability.
J Neurosurg. 2016 Jan;124(1):27-42. doi: 10.3171/2015.1.JNS142452. Epub 2015 Jul 31.
4
Emerging Role of Carotid MRI for Personalized Ischemic Stroke Risk Prediction in Patients With Carotid Artery Stenosis.
Front Neurol. 2021 Aug 3;12:718438. doi: 10.3389/fneur.2021.718438. eCollection 2021.
5
Carotid plaque MRI and stroke risk: a systematic review and meta-analysis.
Stroke. 2013 Nov;44(11):3071-7. doi: 10.1161/STROKEAHA.113.002551. Epub 2013 Aug 29.
7
Validity of dual MRI and F-FDG PET imaging in predicting vulnerable and inflamed carotid plaque.
Cerebrovasc Dis. 2013;35(4):370-7. doi: 10.1159/000348846. Epub 2013 Apr 30.
8
Magnetic resonance imaging of carotid plaques: current status and clinical perspectives.
Ann Transl Med. 2020 Oct;8(19):1266. doi: 10.21037/atm-2020-cass-16.
9
Carotid plaque imaging and the risk of atherosclerotic cardiovascular disease.
Cardiovasc Diagn Ther. 2020 Aug;10(4):1048-1067. doi: 10.21037/cdt.2020.03.10.
10
Pet tracers for vulnerable plaque imaging.
Ann Nucl Med. 2020 May;34(5):305-313. doi: 10.1007/s12149-020-01458-7. Epub 2020 Mar 20.

引用本文的文献

1
Why Current Detection of Vascular Calcification Falls Short and How to Improve on It.
TH Open. 2024 Dec 27;8(4):e340-e349. doi: 10.1055/a-2495-1444. eCollection 2024 Oct.
2
Advanced Imaging Techniques for Atherosclerosis and Cardiovascular Calcification in Animal Models.
J Cardiovasc Dev Dis. 2024 Dec 22;11(12):410. doi: 10.3390/jcdd11120410.
3
Emerging Imaging Techniques for Atherosclerosis in Systemic Immune-Mediated Inflammatory Conditions.
Arterioscler Thromb Vasc Biol. 2025 Jan;45(1):11-22. doi: 10.1161/ATVBAHA.124.321202. Epub 2024 Nov 14.
4
Extended MRI-based PET motion correction for cardiac PET/MRI.
EJNMMI Phys. 2024 Apr 6;11(1):36. doi: 10.1186/s40658-024-00637-z.
5
Simultaneous 18-FDG PET and MR imaging in lower extremity arterial disease.
Front Cardiovasc Med. 2024 Feb 9;11:1352696. doi: 10.3389/fcvm.2024.1352696. eCollection 2024.
6
Advanced targeted nanomedicines for vulnerable atherosclerosis plaque imaging and their potential clinical implications.
Front Pharmacol. 2022 Oct 13;13:906512. doi: 10.3389/fphar.2022.906512. eCollection 2022.
7
Evaluation of a Dedicated Radiofrequency Carotid PET/MRI Coil.
J Clin Med. 2022 May 4;11(9):2569. doi: 10.3390/jcm11092569.
8
Clinical Molecular Imaging for Atherosclerotic Plaque.
J Imaging. 2021 Oct 13;7(10):211. doi: 10.3390/jimaging7100211.
9
Emerging Role of Carotid MRI for Personalized Ischemic Stroke Risk Prediction in Patients With Carotid Artery Stenosis.
Front Neurol. 2021 Aug 3;12:718438. doi: 10.3389/fneur.2021.718438. eCollection 2021.

本文引用的文献

1
Cardiovascular F-fluoride positron emission tomography-magnetic resonance imaging: A comparison study.
J Nucl Cardiol. 2021 Oct;28(5):1-12. doi: 10.1007/s12350-019-01962-y. Epub 2019 Dec 2.
2
PET/MRI vs PET/CT in Head and Neck Imaging: When, Why, and How?
Semin Ultrasound CT MR. 2019 Oct;40(5):376-390. doi: 10.1053/j.sult.2019.07.002. Epub 2019 Jul 16.
3
Noninvasive Imaging to Assess Atherosclerotic Plaque Composition and Disease Activity: Coronary and Carotid Applications.
JACC Cardiovasc Imaging. 2020 Apr;13(4):1055-1068. doi: 10.1016/j.jcmg.2019.03.033. Epub 2019 Aug 14.
4
Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI.
Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2746-2759. doi: 10.1007/s00259-019-04380-x. Epub 2019 Jul 1.
5
Next generation research applications for hybrid PET/MR and PET/CT imaging using deep learning.
Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2700-2707. doi: 10.1007/s00259-019-04374-9. Epub 2019 Jun 29.
6
Direct attenuation correction of brain PET images using only emission data via a deep convolutional encoder-decoder (Deep-DAC).
Eur Radiol. 2019 Dec;29(12):6867-6879. doi: 10.1007/s00330-019-06229-1. Epub 2019 Jun 21.
8
Prediction of Stroke Risk by Detection of Hemorrhage in Carotid Plaques: Meta-Analysis of Individual Patient Data.
JACC Cardiovasc Imaging. 2020 Feb;13(2 Pt 1):395-406. doi: 10.1016/j.jcmg.2019.03.028. Epub 2019 Jun 12.
9
Carotid Plaque Inflammation Imaged by F-Fluorodeoxyglucose Positron Emission Tomography and Risk of Early Recurrent Stroke.
Stroke. 2019 Jul;50(7):1766-1773. doi: 10.1161/STROKEAHA.119.025422. Epub 2019 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验