Suppr超能文献

通过深度卷积神经网络从多磁共振序列进行联合脑肿瘤分割

Joint Brain Tumor Segmentation from Multi-magnetic Resonance Sequences through a Deep Convolutional Neural Network.

作者信息

Dehghani Farzaneh, Karimian Alireza, Arabi Hossein

机构信息

Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.

Department of Medical Imaging, Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland.

出版信息

J Med Signals Sens. 2024 Apr 8;14:9. doi: 10.4103/jmss.jmss_13_23. eCollection 2024.

Abstract

BACKGROUND

Brain tumor segmentation is highly contributive in diagnosing and treatment planning. Manual brain tumor delineation is a time-consuming and tedious task and varies depending on the radiologist's skill. Automated brain tumor segmentation is of high importance and does not depend on either inter- or intra-observation. The objective of this study is to automate the delineation of brain tumors from the Fluid-attenuated inversion recovery (FLAIR), T1-weighted (T1W), T2-weighted (T2W), and T1W contrast-enhanced (T1ce) magnetic resonance (MR) sequences through a deep learning approach, with a focus on determining which MR sequence alone or which combination thereof would lead to the highest accuracy therein.

METHODS

The BraTS-2020 challenge dataset, containing 370 subjects with four MR sequences and manually delineated tumor masks, is applied to train a residual neural network. This network is trained and assessed separately for each one of the MR sequences (single-channel input) and any combination thereof (dual- or multi-channel input).

RESULTS

The quantitative assessment of the single-channel models reveals that the FLAIR sequence would yield higher segmentation accuracy compared to its counterparts with a 0.77 ± 0.10 Dice index. As to considering the dual-channel models, the model with FLAIR and T2W inputs yields a 0.80 ± 0.10 Dice index, exhibiting higher performance. The joint tumor segmentation on the entire four MR sequences yields the highest overall segmentation accuracy with a 0.82 ± 0.09 Dice index.

CONCLUSION

The FLAIR MR sequence is considered the best choice for tumor segmentation on a single MR sequence, while the joint segmentation on the entire four MR sequences would yield higher tumor delineation accuracy.

摘要

背景

脑肿瘤分割对诊断和治疗规划具有重要意义。手动勾勒脑肿瘤轮廓是一项耗时且繁琐的任务,并且因放射科医生的技术水平而异。自动脑肿瘤分割非常重要,且不依赖于观察者之间或观察者内部的差异。本研究的目的是通过深度学习方法实现从液体衰减反转恢复(FLAIR)、T1加权(T1W)、T2加权(T2W)和T1W对比增强(T1ce)磁共振(MR)序列中自动勾勒脑肿瘤轮廓,重点是确定单独使用哪种MR序列或其哪种组合能在其中实现最高的准确性。

方法

将包含370名受试者的四个MR序列及手动勾勒的肿瘤掩码的BraTS - 2020挑战数据集应用于训练残差神经网络。针对每个MR序列(单通道输入)及其任意组合(双通道或多通道输入)分别训练和评估该网络。

结果

单通道模型的定量评估表明,FLAIR序列相比其他序列能产生更高的分割准确率,其Dice指数为0.77±0.10。至于双通道模型,具有FLAIR和T2W输入的模型产生的Dice指数为0.80±0.10,表现出更高的性能。对全部四个MR序列进行联合肿瘤分割产生了最高的总体分割准确率,Dice指数为0.82±0.09。

结论

FLAIR MR序列被认为是单个MR序列上肿瘤分割的最佳选择,而对全部四个MR序列进行联合分割将产生更高的肿瘤勾勒准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e46/11111160/814bd2e27aeb/JMSS-14-9-g006.jpg

相似文献

1
Joint Brain Tumor Segmentation from Multi-magnetic Resonance Sequences through a Deep Convolutional Neural Network.
J Med Signals Sens. 2024 Apr 8;14:9. doi: 10.4103/jmss.jmss_13_23. eCollection 2024.
3
Deep learning automatic semantic segmentation of glioblastoma multiforme regions on multimodal magnetic resonance images.
Int J Comput Assist Radiol Surg. 2024 Sep;19(9):1743-1751. doi: 10.1007/s11548-024-03205-z. Epub 2024 Jun 7.
5
Automated Meningioma Segmentation in Multiparametric MRI : Comparable Effectiveness of a Deep Learning Model and Manual Segmentation.
Clin Neuroradiol. 2021 Jun;31(2):357-366. doi: 10.1007/s00062-020-00884-4. Epub 2020 Feb 14.
6
Identifying core MRI sequences for reliable automatic brain metastasis segmentation.
Radiother Oncol. 2023 Nov;188:109901. doi: 10.1016/j.radonc.2023.109901. Epub 2023 Sep 7.
7
An active learning approach to train a deep learning algorithm for tumor segmentation from brain MR images.
Insights Imaging. 2023 Aug 25;14(1):141. doi: 10.1186/s13244-023-01487-6.
8
RFS+: A Clinically Adaptable and Computationally Efficient Strategy for Enhanced Brain Tumor Segmentation.
Cancers (Basel). 2023 Nov 28;15(23):5620. doi: 10.3390/cancers15235620.
9
Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
Eur Radiol. 2020 Feb;30(2):823-832. doi: 10.1007/s00330-019-06441-z. Epub 2019 Oct 24.
10
Reducing annotation burden in MR: A novel MR-contrast guided contrastive learning approach for image segmentation.
Med Phys. 2024 Apr;51(4):2707-2720. doi: 10.1002/mp.16820. Epub 2023 Nov 13.

引用本文的文献

1
Brain tumor segmentation using deep learning: high performance with minimized MRI data.
Front Radiol. 2025 Jul 8;5:1616293. doi: 10.3389/fradi.2025.1616293. eCollection 2025.

本文引用的文献

1
Brain Tumor Segmentation using Hierarchical Combination of Fuzzy Logic and Cellular Automata.
J Med Signals Sens. 2022 Jul 26;12(3):263-268. doi: 10.4103/jmss.jmss_128_21. eCollection 2022 Jul-Sep.
2
Brain Tumor Segmentation Using Graph Coloring Approach in Magnetic Resonance Images.
J Med Signals Sens. 2021 Oct 20;11(4):285-290. doi: 10.4103/jmss.JMSS_43_20. eCollection 2021 Oct-Dec.
3
Applications of artificial intelligence and deep learning in molecular imaging and radiotherapy.
Eur J Hybrid Imaging. 2020 Sep 23;4(1):17. doi: 10.1186/s41824-020-00086-8.
4
Deep learning-based metal artefact reduction in PET/CT imaging.
Eur Radiol. 2021 Aug;31(8):6384-6396. doi: 10.1007/s00330-021-07709-z. Epub 2021 Feb 10.
7
Deep learning-guided estimation of attenuation correction factors from time-of-flight PET emission data.
Med Image Anal. 2020 Aug;64:101718. doi: 10.1016/j.media.2020.101718. Epub 2020 May 19.
8
Deep learning-guided joint attenuation and scatter correction in multitracer neuroimaging studies.
Hum Brain Mapp. 2020 Sep;41(13):3667-3679. doi: 10.1002/hbm.25039. Epub 2020 May 21.
9
Automatic Brain Tumor Segmentation Based on Cascaded Convolutional Neural Networks With Uncertainty Estimation.
Front Comput Neurosci. 2019 Aug 13;13:56. doi: 10.3389/fncom.2019.00056. eCollection 2019.
10
A review on brain tumor segmentation of MRI images.
Magn Reson Imaging. 2019 Sep;61:247-259. doi: 10.1016/j.mri.2019.05.043. Epub 2019 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验