Suppr超能文献

亚甲基四氢叶酸脱氢酶1调节细胞核内胸腺嘧啶核苷酸的从头生物合成及基因组稳定性。

MTHFD1 regulates nuclear de novo thymidylate biosynthesis and genome stability.

作者信息

Field Martha S, Kamynina Elena, Stover Patrick J

机构信息

Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.

Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA.

出版信息

Biochimie. 2016 Jul;126:27-30. doi: 10.1016/j.biochi.2016.02.001. Epub 2016 Feb 4.

Abstract

Disruptions in folate-mediated one-carbon metabolism (FOCM) are associated with risk for several pathologies including developmental anomalies such as neural tube defects and congenital heart defects, diseases of aging including cognitive decline, neurodegeneration and epithelial cancers, and hematopoietic disorders including megaloblastic anemia. However, the causal pathways and mechanisms that underlie these pathologies remain unresolved. Because folate-dependent anabolic pathways are tightly interconnected and best described as a metabolic network, the identification of causal pathways and associated mechanisms of pathophysiology remains a major challenge in identifying the contribution of individual pathways to disease phenotypes. Investigations of genetic mouse models and human inborn errors of metabolism enable a more precise dissection of the pathways that constitute the FOCM network and enable elucidation of causal pathways associated with NTDs. In this overview, we summarize recent evidence that the enzyme MTHFD1 plays an essential role in FOCM in humans and in mice, and that it determines the partitioning of folate-activated one carbon units between the folate-dependent de novo thymidylate and homocysteine remethylation pathways through its regulated nuclear localization. We demonstrate that impairments in MTHFD1 activity compromise both homocysteine remethylation and de novo thymidylate biosynthesis, and provide evidence that MTHFD1-associated disruptions in de novo thymidylate biosynthesis lead to genome instability that may underlie folate-associated immunodeficiency and birth defects.

摘要

叶酸介导的一碳代谢(FOCM)紊乱与多种疾病风险相关,包括神经管缺陷和先天性心脏病等发育异常、认知衰退、神经退行性变和上皮癌等衰老相关疾病,以及巨幼细胞贫血等造血系统疾病。然而,这些疾病背后的因果途径和机制仍未得到解决。由于叶酸依赖性合成代谢途径紧密相连,最好将其描述为一个代谢网络,因此确定因果途径和相关的病理生理机制仍然是确定个体途径对疾病表型贡献的一项重大挑战。对基因小鼠模型和人类先天性代谢缺陷的研究能够更精确地剖析构成FOCM网络的途径,并有助于阐明与神经管缺陷相关的因果途径。在本综述中,我们总结了最近的证据,即MTHFD1酶在人类和小鼠的FOCM中起着至关重要的作用,并且它通过其受调控的核定位决定了叶酸激活的一碳单位在叶酸依赖性从头胸苷酸和同型半胱氨酸再甲基化途径之间的分配。我们证明,MTHFD1活性受损会损害同型半胱氨酸再甲基化和从头胸苷酸生物合成,并提供证据表明MTHFD1相关的从头胸苷酸生物合成破坏会导致基因组不稳定,这可能是叶酸相关免疫缺陷和出生缺陷的基础。

相似文献

1
MTHFD1 regulates nuclear de novo thymidylate biosynthesis and genome stability.
Biochimie. 2016 Jul;126:27-30. doi: 10.1016/j.biochi.2016.02.001. Epub 2016 Feb 4.
3
Human mutations in methylenetetrahydrofolate dehydrogenase 1 impair nuclear de novo thymidylate biosynthesis.
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):400-5. doi: 10.1073/pnas.1414555112. Epub 2014 Dec 29.
4
Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis.
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2319-E2326. doi: 10.1073/pnas.1619745114. Epub 2017 Mar 6.
5
Biochemical analysis of patients with mutations in MTHFD1 and a diagnosis of methylenetetrahydrofolate dehydrogenase 1 deficiency.
Mol Genet Metab. 2020 Jul;130(3):179-182. doi: 10.1016/j.ymgme.2020.04.008. Epub 2020 May 5.
7
Shmt1 and de novo thymidylate biosynthesis underlie folate-responsive neural tube defects in mice.
Am J Clin Nutr. 2011 Apr;93(4):789-98. doi: 10.3945/ajcn.110.002766. Epub 2011 Feb 23.
8
Folate rescues vitamin B depletion-induced inhibition of nuclear thymidylate biosynthesis and genome instability.
Proc Natl Acad Sci U S A. 2017 May 16;114(20):E4095-E4102. doi: 10.1073/pnas.1619582114. Epub 2017 May 1.
10
Maternal Mthfd1 disruption impairs fetal growth but does not cause neural tube defects in mice.
Am J Clin Nutr. 2012 Apr;95(4):882-91. doi: 10.3945/ajcn.111.030783. Epub 2012 Feb 29.

引用本文的文献

1
Fructose metabolism is unregulated in cancers and placentae.
Exp Biol Med (Maywood). 2024 Oct 28;249:10200. doi: 10.3389/ebm.2024.10200. eCollection 2024.
2
DTYMK is an essential gene in mice and heterozygosity does not cause neural tube defects.
Arch Biochem Biophys. 2024 May;755:109991. doi: 10.1016/j.abb.2024.109991. Epub 2024 Apr 15.
3
Regulatory mechanisms of one-carbon metabolism enzymes.
J Biol Chem. 2023 Dec;299(12):105457. doi: 10.1016/j.jbc.2023.105457. Epub 2023 Nov 9.
5
A Common Polymorphism in the Gene Is a Modulator of Risk of Congenital Heart Disease.
J Cardiovasc Dev Dis. 2022 May 24;9(6):166. doi: 10.3390/jcdd9060166.
6
The Emerging Role of MTHFD Family Genes in Regulating the Tumor Immunity of Oral Squamous Cell Carcinoma.
J Oncol. 2022 Jun 3;2022:4867730. doi: 10.1155/2022/4867730. eCollection 2022.
7
Metabolic Fuel for Epigenetic: Nuclear Production Meets Local Consumption.
Front Genet. 2021 Nov 3;12:768996. doi: 10.3389/fgene.2021.768996. eCollection 2021.
9
The Possible Mechanism of Physiological Adaptation to the Low-Se Diet and Its Health Risk in the Traditional Endemic Areas of Keshan Diseases.
Biol Trace Elem Res. 2022 May;200(5):2069-2083. doi: 10.1007/s12011-021-02851-7. Epub 2021 Aug 8.
10
Genetic variants in the folate metabolic pathway genes predict cutaneous melanoma-specific survival.
Br J Dermatol. 2020 Oct;183(4):719-728. doi: 10.1111/bjd.18878. Epub 2020 Feb 26.

本文引用的文献

2
Human mutations in methylenetetrahydrofolate dehydrogenase 1 impair nuclear de novo thymidylate biosynthesis.
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):400-5. doi: 10.1073/pnas.1414555112. Epub 2014 Dec 29.
4
Modeling cellular compartmentation in one-carbon metabolism.
Wiley Interdiscip Rev Syst Biol Med. 2013 May-Jun;5(3):343-65. doi: 10.1002/wsbm.1209. Epub 2013 Feb 13.
5
Severe combined immunodeficiency resulting from mutations in MTHFD1.
Pediatrics. 2013 Feb;131(2):e629-34. doi: 10.1542/peds.2012-0899. Epub 2013 Jan 6.
7
Maternal Mthfd1 disruption impairs fetal growth but does not cause neural tube defects in mice.
Am J Clin Nutr. 2012 Apr;95(4):882-91. doi: 10.3945/ajcn.111.030783. Epub 2012 Feb 29.
8
Trafficking of intracellular folates.
Adv Nutr. 2011 Jul;2(4):325-31. doi: 10.3945/an.111.000596. Epub 2011 Jun 28.
9
Serine hydroxymethyltransferase anchors de novo thymidylate synthesis pathway to nuclear lamina for DNA synthesis.
J Biol Chem. 2012 Mar 2;287(10):7051-62. doi: 10.1074/jbc.M111.333120. Epub 2012 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验