Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
Am J Clin Nutr. 2011 Apr;93(4):789-98. doi: 10.3945/ajcn.110.002766. Epub 2011 Feb 23.
Folic acid supplementation prevents the occurrence and recurrence of neural tube defects (NTDs), but the causal metabolic pathways underlying folic acid-responsive NTDs have not been established. Serine hydroxymethyltransferase (SHMT1) partitions folate-derived one-carbon units to thymidylate biosynthesis at the expense of cellular methylation, and therefore SHMT1-deficient mice are a model to investigate the metabolic origin of folate-associated pathologies.
We examined whether genetic disruption of the Shmt1 gene in mice induces NTDs in response to maternal folate and choline deficiency and whether a corresponding disruption in de novo thymidylate biosynthesis underlies NTD pathogenesis.
Shmt1 wild-type, Shmt1(+/-), and Shmt1(-/-) mice fed either folate- and choline-sufficient or folate- and choline-deficient diets were bred, and litters were examined for the presence of NTDs. Biomarkers of impaired folate metabolism were measured in the dams. In addition, the effect of Shmt1 disruption on NTD incidence was investigated in Pax3(Sp) mice, an established folate-responsive NTD mouse model.
Shmt1(+/-) and Shmt1(-/-) embryos exhibited exencephaly in response to maternal folate and choline deficiency. Shmt1 disruption on the Pax3(Sp) background exacerbated NTD frequency and severity. Pax3 disruption impaired de novo thymidylate and purine biosynthesis and altered amounts of SHMT1 and thymidylate synthase protein.
SHMT1 is the only folate-metabolizing enzyme that has been shown to affect neural tube closure in mice by directly inhibiting folate metabolism. These results provide evidence that disruption of Shmt1 expression causes NTDs by impairing thymidylate biosynthesis and shows that changes in the expression of genes that encode folate-dependent enzymes may be key determinates of NTD risk.
叶酸补充剂可预防神经管缺陷(NTD)的发生和复发,但叶酸反应性 NTD 背后的因果代谢途径尚未确定。丝氨酸羟甲基转移酶 1(SHMT1)将叶酸衍生的一碳单位分配到胸苷酸生物合成中,牺牲细胞甲基化,因此 SHMT1 缺陷型小鼠是研究叶酸相关疾病代谢起源的模型。
我们研究了 SHMT1 基因在小鼠中的遗传缺失是否会导致叶酸和胆碱缺乏的母体对 NTD 的反应,以及从头胸苷酸生物合成的相应缺失是否是 NTD 发病机制的基础。
SHMT1 野生型、Shmt1(+/-)和 Shmt1(-/-) 小鼠分别喂食叶酸和胆碱充足或缺乏的饮食,然后繁殖,并检查其是否存在 NTD。测量母体中受损叶酸代谢的生物标志物。此外,还研究了 Shmt1 缺失对 Pax3(Sp)小鼠(一种已建立的叶酸反应性 NTD 小鼠模型)中 NTD 发生率的影响。
Shmt1(+/-)和 Shmt1(-/-)胚胎在叶酸和胆碱缺乏的母体中表现出无脑畸形。在 Pax3(Sp)背景下的 Shmt1 缺失加剧了 NTD 的频率和严重程度。Pax3 缺失损害了从头胸苷酸和嘌呤生物合成,并改变了 SHMT1 和胸苷酸合酶蛋白的含量。
SHMT1 是唯一一种被证明可以通过直接抑制叶酸代谢来影响小鼠神经管闭合的叶酸代谢酶。这些结果表明,Shmt1 表达的破坏通过损害胸苷酸合成引起 NTD,并表明编码叶酸依赖性酶的基因表达的变化可能是 NTD 风险的关键决定因素。