Suppr超能文献

蛋白质三级结构中α-螺旋主链修饰的设计策略比较。

Comparison of design strategies for α-helix backbone modification in a protein tertiary fold.

作者信息

Tavenor Nathan A, Reinert Zachary E, Lengyel George A, Griffith Brian D, Horne W Seth

机构信息

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.

出版信息

Chem Commun (Camb). 2016 Mar 7;52(19):3789-92. doi: 10.1039/c6cc00273k.

Abstract

We report here the comparison of five classes of unnatural amino acid building blocks for their ability to be accommodated into an α-helix in a protein tertiary fold context. High-resolution structural characterization and analysis of folding thermodynamics yield new insights into the relationship between backbone composition and folding energetics in α-helix mimetics and suggest refined design rules for engineering the backbones of natural sequences.

摘要

我们在此报告了五类非天然氨基酸构建模块在蛋白质三级折叠环境中被纳入α-螺旋的能力的比较。高分辨率结构表征和折叠热力学分析为α-螺旋模拟物中主链组成与折叠能量学之间的关系提供了新见解,并为设计天然序列的主链提出了改进的设计规则。

相似文献

1
Comparison of design strategies for α-helix backbone modification in a protein tertiary fold.
Chem Commun (Camb). 2016 Mar 7;52(19):3789-92. doi: 10.1039/c6cc00273k.
2
Protein-like tertiary folding behavior from heterogeneous backbones.
J Am Chem Soc. 2013 Aug 28;135(34):12528-31. doi: 10.1021/ja405422v. Epub 2013 Aug 15.
4
Foldamer Tertiary Structure through Sequence-Guided Protein Backbone Alteration.
Acc Chem Res. 2018 May 15;51(5):1220-1228. doi: 10.1021/acs.accounts.8b00048. Epub 2018 Apr 19.
5
Backbone Modification in a Protein Hydrophobic Core.
Chemistry. 2024 Aug 12;30(45):e202401890. doi: 10.1002/chem.202401890. Epub 2024 Jun 24.
6
Heterogeneous-Backbone Foldamer Mimics of Zinc Finger Tertiary Structure.
J Am Chem Soc. 2017 Jun 14;139(23):7931-7938. doi: 10.1021/jacs.7b03114. Epub 2017 Jun 5.
7
Robust folding of a de novo designed ideal protein even with most of the core mutated to valine.
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31149-31156. doi: 10.1073/pnas.2002120117. Epub 2020 Nov 23.
8
Analysis of folded structure and folding thermodynamics in heterogeneous-backbone proteomimetics.
Methods Enzymol. 2021;656:93-122. doi: 10.1016/bs.mie.2021.04.009. Epub 2021 May 3.
9
The design and characterization of two proteins with 88% sequence identity but different structure and function.
Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):11963-8. doi: 10.1073/pnas.0700922104. Epub 2007 Jul 3.

引用本文的文献

1
Interplay between C Methylation and C Stereochemistry in the Folding Energetics of a Helix-Rich Miniprotein.
Chembiochem. 2025 Mar 15;26(6):e202401022. doi: 10.1002/cbic.202401022. Epub 2025 Jan 24.
2
Structural and Functional Mimicry of the Antimicrobial Defensin Plectasin by Analogues with Engineered Backbone Composition.
Chembiochem. 2025 Feb 3;26(5):e202400951. doi: 10.1002/cbic.202400951. Epub 2025 Jan 9.
3
Backbone Modification in a Protein Hydrophobic Core.
Chemistry. 2024 Aug 12;30(45):e202401890. doi: 10.1002/chem.202401890. Epub 2024 Jun 24.
4
Effects of altered backbone composition on the folding kinetics and mechanism of an ultrafast-folding protein.
Chem Sci. 2023 Dec 4;15(2):675-682. doi: 10.1039/d3sc03976e. eCollection 2024 Jan 3.
6
Implications of the unfolded state in the folding energetics of heterogeneous-backbone protein mimetics.
Chem Sci. 2022 Sep 20;13(40):11798-11806. doi: 10.1039/d2sc04427g. eCollection 2022 Oct 19.
7
Heterogeneous-Backbone Proteomimetic Analogues of Lasiocepsin, a Disulfide-Rich Antimicrobial Peptide with a Compact Tertiary Fold.
ACS Chem Biol. 2022 Apr 15;17(4):987-997. doi: 10.1021/acschembio.2c00138. Epub 2022 Mar 15.
8
A twist in the road less traveled: The AMBER ff15ipq-m force field for protein mimetics.
J Chem Phys. 2020 Aug 14;153(6):064101. doi: 10.1063/5.0019054.
9
Development of CHARMM Additive Potential Energy Parameters for α-Methyl Amino Acids.
J Phys Chem B. 2021 Oct 28;125(42):11687-11696. doi: 10.1021/acs.jpcb.1c07202. Epub 2021 Oct 15.
10
Analysis of folded structure and folding thermodynamics in heterogeneous-backbone proteomimetics.
Methods Enzymol. 2021;656:93-122. doi: 10.1016/bs.mie.2021.04.009. Epub 2021 May 3.

本文引用的文献

1
Shaping quaternary assemblies of water-soluble non-peptide helical foldamers by sequence manipulation.
Nat Chem. 2015 Nov;7(11):871-8. doi: 10.1038/nchem.2353. Epub 2015 Sep 28.
2
Peptoid nanosheets exhibit a new secondary-structure motif.
Nature. 2015 Oct 15;526(7573):415-20. doi: 10.1038/nature15363. Epub 2015 Oct 7.
3
Folding and function in α/β-peptides: targets and therapeutic applications.
Curr Opin Chem Biol. 2015 Oct;28:75-82. doi: 10.1016/j.cbpa.2015.06.013. Epub 2015 Jun 30.
4
Targeting diverse protein-protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold.
Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4552-7. doi: 10.1073/pnas.1420380112. Epub 2015 Mar 30.
5
8
Folding Thermodynamics of Protein-Like Oligomers with Heterogeneous Backbones.
Chem Sci. 2014 Aug 1;5(8):3325-3330. doi: 10.1039/C4SC01094A.
9
A fibril-like assembly of oligomers of a peptide derived from β-amyloid.
J Am Chem Soc. 2014 Sep 10;136(36):12682-90. doi: 10.1021/ja505713y. Epub 2014 Aug 26.
10
Backbone modification of a polypeptide drug alters duration of action in vivo.
Nat Biotechnol. 2014 Jul;32(7):653-5. doi: 10.1038/nbt.2920. Epub 2014 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验