Suppr超能文献

双糖基二硒醚改变感染性非洲锥虫的氧化还原平衡和葡萄糖消耗。

Diglycosyl diselenides alter redox homeostasis and glucose consumption of infective African trypanosomes.

机构信息

Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay; Cátedra de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de La República, Gral. Flores 2124, 11800 Montevideo, Uruguay.

Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay.

出版信息

Int J Parasitol Drugs Drug Resist. 2017 Dec;7(3):303-313. doi: 10.1016/j.ijpddr.2017.08.001. Epub 2017 Aug 12.

Abstract

With the aim to develop compounds able to target multiple metabolic pathways and, thus, to lower the chances of drug resistance, we investigated the anti-trypanosomal activity and selectivity of a series of symmetric diglycosyl diselenides and disulfides. Of 18 compounds tested the fully acetylated forms of di-β-D-glucopyranosyl and di-β-D-galactopyranosyl diselenides (13 and 15, respectively) displayed strong growth inhibition against the bloodstream stage of African trypanosomes (EC 0.54 μM for 13 and 1.49 μM for 15) although with rather low selectivity (SI < 10 assayed with murine macrophages). Nonacetylated versions of the same sugar diselenides proved to be, however, much less efficient or completely inactive to suppress trypanosome growth. Significantly, the galactosyl (15), and to a minor extent the glucosyl (13), derivative inhibited glucose catabolism but not its uptake. Both compounds induced redox unbalance in the pathogen. In vitro NMR analysis indicated that diglycosyl diselenides react with glutathione, under physiological conditions, via formation of selenenylsulfide bonds. Our results suggest that non-specific cellular targets as well as actors of the glucose and the redox metabolism of the parasite may be affected. These molecules are therefore promising leads for the development of novel multitarget antitrypanosomal agents.

摘要

为了开发能够靶向多种代谢途径的化合物,从而降低药物耐药性的可能性,我们研究了一系列对称二糖基二硒化物和二硫化物的抗锥虫活性和选择性。在所测试的 18 种化合物中,全乙酰化的二-β-D-吡喃葡萄糖基和二-β-D-吡喃半乳糖基二硒化物(分别为 13 和 15)对非洲锥虫的血液阶段表现出强烈的生长抑制作用(对 13 的 EC 0.54 μM,对 15 的 EC 0.54 μM),尽管选择性相当低(用鼠巨噬细胞测定的 SI<10)。然而,相同糖二硒化物的非乙酰化形式的效率要低得多,或者完全不能抑制锥虫的生长。值得注意的是,半乳糖基(15),以及在较小程度上的葡萄糖基(13)衍生物,抑制了葡萄糖的分解代谢,但不抑制其摄取。这两种化合物都在病原体中诱导了氧化还原失衡。体外 NMR 分析表明,在生理条件下,二糖基二硒化物通过形成硒代亚磺酸键与谷胱甘肽反应。我们的结果表明,非特异性细胞靶标以及寄生虫葡萄糖和氧化还原代谢的作用者可能受到影响。因此,这些分子是开发新型多靶抗锥虫药物的有希望的先导化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0774/5565762/8c170c90a411/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验